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Tracking by fast (re-) detection

actual object position

from time t to t+1Time t „find“ again

actual object position
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Tracking Cues

� Object Appearance

� Background

Object/Background
discrimination

� Object Boundary

� Motion
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[Grabner et al. VideoProc.CVPR 2006]
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Tracking Requirements (model free tracking)

� Adaptive

� Robustness And of course, � Robustness

� Generality
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And of course, 

REAL TIME!



PART I

On-line Boosting based 
Tracking

CVPR’06, BMVC’06



Boosting and Vision

� Boosting

� Boosting for Feature 

� On-line boosting

� On-line Boosting for 

[Oza and Russel, AIS, 2001][Freund and Schapire, JCSC, 1997]

� Boosting for Feature 
Selection

� On-line Boosting for 
Feature Selection
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[Tieu and Viola. CVPR 2000], [Viola 
and Jones, CVPR 2001]

[Grabner and Bischof, CVPR 2006]



Off-line learning
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On-line learning

Learning Algorithm
Teacher

Labeled Information
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Sir, could you please tell 
me what boosting is?

Boosting needs just some 
guy who is a little bit better 

than guessing. 
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Off-line boosting

Strong classifier Weak classifier

Reweighting the 
training examples

2009/08/18, Southampton 12H. Grabner, Tracking for Learning and Lessons Learned from it - ETH-Zurich, Computer Vision Lab



Boosting for Feature Selection

� Combination of Simple 
Image Features for 
distinguishing two classes

� Features = weak classifier� Features = weak classifier
� Boosting to select a subset 

(strong classifier)
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On-line Boosting
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On-line Boosting

Converges to the 
off -line result!
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off -line result!



On-Boosting for Feature Selection

� Combination of Simple 
Image Features for 
distinguishing two classes

� Features = weak classifier
� Boosting to select a subset 

(strong classifier)
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On-Boosting for Feature Selection

� Combination of Simple 
Image Features for 

General approach 
for on -line feature 

distinguishing two classes

� Features = weak classifier
� Boosting to select a subset 

(strong classifier)
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for on -line feature 
selection.



Tracking as Classification

object

background
vs.
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Tracking as Classification

object

background
vs.
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search Region

actual object position

from time t to t+1 evaluate classifier on sub-patches

-

+

- -

-

create confidence map
analyze map and set new 

object position update classifier (tracker) 
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Object 
Detector

Fixed Training set
General object detector

Off-line Boosting for 
Feature Selection

Object Tracker

On-line update
Object vs. Background

On-Line Boosting for 
Feature Selection
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LESSON LEARNED 1

Tracking is a simple task!
(When formulating it properly)
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“Simple tracking”
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“Tracking the Invisible”
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Tracking Solved ☺☺☺☺
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Does it fail?
If yes, when?



When does it fail…
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When does it fail…

Often, all too 
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Often, all too 
often!



When does it fail…

WHY?
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WHY?



search Region

actual object position

from time t to t+1 evaluate classifier on sub-patches

-

+

- -

-

create confidence map
analyze map and 

set new object 
position 

update classifier (tracker) 

Self-learning
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Drifting due to self-learning policy

Tracked Patches Confidence
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LESSON LEARNED 2

Self-learning →→→→ drifting!



PART II

Semi-Supervised On-line 
Boosting for Tracking

ECCV’08



Review: Supervised Tracking
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Problems of…

Label Jitter

-

+
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Label Noise

Label Jitter

+
+



Semi-Supervised Tracking

Un-labeled
data
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Labeled data



Supervised learning

+ -+ -

+ -

Maximum margin
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Can Unlabeled Data Help?
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decision
boundary in low 
density region
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Semi-Supervised On-line Boosting

Prior

++ + ?

-
?
?

?

?

?

?
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Semi-Supervised On-line Boosting

fix

“stable”

dynamic

Prior

fix

Nobody is perfect!
But, be a honest Teacher!

Hoff (Prior) can be wrong with low 
confidence.

dynamic
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Tracking Loop

search Region

actual object position

evaluate classifier on 
sub-patches

Prior

create confidence mapupdate classifier (tracker) 

??

?
?
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Labeled data

Un-labeled
data

Prior



LESSON LEARNED 3

On-line Semi-supervised
learninig →→→→ limited learninig →→→→ limited 

drifting.



Occlusions
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Object disapearance
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Long term tracking (1h)
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Click here to start



Tracking Solved ☺☺☺☺
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Does it fail?
If yes, when?
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Prior is too 
generic (e.g, dirft 
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generic (e.g, dirft 
to similar objects)
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Prior restricts too 
much (e.g., partial 
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much (e.g., partial 
occlusions)



LESSON LEARNED 4

Prior is essential in semi-
supervised learning.supervised learning.

(c.f., Stability Plasticy
Dilemma)



PART III

Beyond Semi-Supervised 
Tracking

ICCV’09 WS on On-line Learning for 
Computer Vision



Review: Detection
Non adaptive at all!
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Review: Supervised Tracking

Too adaptive
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Review: Semi-Supervised Tracking

Limit drifting but too
restrictive / general
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NEW PRINCIPLE: Active Sampling via Tracking
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NEW PRINCIPLE: Active Sampling via Tracking
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NEW APPROACH: Adaptive Prior

Additional 
information

for prior update

Detector
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Detector

Detector



Specializing (Simplifying)
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Updates No Few trustful
Many semi-
supervised

Learning task
Object class vs. 
everything else

Particular objects 
vs. other objects 
and background

Current Object 
appearance vs.

local surrounding

Applicable
Any time, 

everywhere
Current scene

Local
neighborhood



Multiple classifier system

� #include “vision.h” use addition information, e.g., multiple 
objects, background image

� Information aggregation
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Performance evaluation

Ground TruthNot 
visible

Too 
Adaptive Less 

position

False 
positives

False
negatives

True
positives
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Adaptive Less 
Adaptive

time
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Implicit Occlusion handling
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Really Long Term Tracking (24h)
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Click here to start



…
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…



LESSON LEARNED 5

Vision is more then pure 
Machine Learning!Machine Learning!

(keep problems simple)



Extension 1: re-Identification
Identifier 1
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Identifier 2
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Extension 2: Information Aggregation
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Whole Image

Object instance /
current scene

Scene / Current object /
local surrounding

Specific image
location

Specialization



Pedestrian Detection (PETS)
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Generic Detector & Context Proposed Approach



LESSON LEARNED 6

Vision ≠ Detection + 
Tracking + Recognition Tracking + Recognition 

(benefitting from a lot of
– unlabeled – data)
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Conclusion

Tracking is 
simple

Self-learning →→→→
drifting

Semi-Supervised 
learning
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Prior ����

Vision > Machine 
Learning

Vision ≠ Det. + 
Trac. + Rec.
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Code/Demos & Tracker Evaluation
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Additional Slides…



Detector
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No Updates

Confidence mapValid samples



Detector
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Neg.
updates

Confidence mapValid samples

pos.
updates



Detector
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Confidence mapValid samples Unlabeled updates
(foreground & local background)


