

Simplifying Object Detection: Classifier Grids for Learning Robust Adaptive Object Detectors

Helmut Grabner

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Outline

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Object Detection

Challenges 1: View Point Variation

[Fei Fei, Torralba, Fergus 2005-2008]

B Computer Vision

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Challenges 2: Illumination

Challenges 3: Occlusion

Challenges 4: Scale

Challenges 5: Deformation

Challenges 6: Background Clutter

Challenges 7: Intra-class Variation

Challenges 8: Local Ambiguity

Challenges 8: Local Ambiguity

Challenges 9: The world behind the image

Recovering 3D geometry from single 2D projection

Infinite number of possible solutions!

potential aggressive persons

Is this (nowadays) really our problem?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Datasets

Caviar

© Crown copyright

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Crowds

Occlusions/Self Occlusions

Occlusions

Other moving objects

Similar Objects

Real-life Working conditions

Real-Time

How can this be done?

Benefits

Benefits

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Vladimir Vapnik

PART I

Object Detectors

Object Detection

Input Sequence

Fixed Camera Setup

Detection

Person Detection: (i) Background Modelling

Input image

Current background model

Background Modeling

Update

Compare

```
\longleftrightarrow
```


Easy to implement, good results but...

... strong assumptions (moving objects,...)

Appearance Model

Sliding Window

Detection: Evaluation on many sub-images

Post-processing

[Viola/Jones, CVPR 2001]

Apply classifier exhaustively

Machine Learning

Three main issues

Representation

How to represent an object (category)

Learning

How to form the classifier, given training data

Recognition

How the classifier is to be used on novel data

Learning-based Methods in Vision

Alyosha Efros

Google Intelligence (GI): The AI for the post-modern world!

Learning-based Methods in Vision

(after his third beer)

Person Detection

[Felzenszwalb et al. CVPR 2008]

Stable, always the same result

Has to cope with <u>ALL</u> possible situations!

Context

Context ⇒ **Prior Knowledge**

(b) P(person) = uniform

[Hoiem, Efros and Hebert, CVPR 2006]

Context \Rightarrow **Prior Knowledge**

[Hoiem, Efros and Hebert, CVPR 2006]

ETH

Context \Rightarrow **Prior Knowledge**

(b) P(person) = uniform

(d) P(person | geometry)

(f) P(person | viewpoint)

[Hoiem, Efros and Hebert, CVPR 2006]

ETH

Context \Rightarrow **Prior Knowledge**

Simpler problem as before!

Some kind of post-processing (reduce false positive rate), classifier stays the same!

PART II

Adaptive Object Detectors

Object Detection as Binary Classification

Off-line learning

On-line Learning

On-line Learning

Object Detection

Adaptive Object Detection

Simpler problem as before!

How to update the classifier?

"Fewer Clicks - Less Frustration"

 Active Learning Image **Detections** Classifier Labels Classifier

Minimize hand labeling

A 3D Teacher

A 3D Teacher

Conservative Learning

[Roth et al. VS-PETS WS 2005]

Improving Performance

More or Less no Hand labeling, Improving Performance

Does it fail? If yes, when?

Two Issues

- Mainly Verification
 Reduce false positive rate
- Update Strategies
 - Oracle
 - Verification
 - Co-training
 - Self-training

"Fewer Clicks - Less Frustration"

3D Teacher

Verification using Redundancy

On-line Conservative Learning

Verification using Classifiers

Problems of...

Btw: Relation to Object Tracking

... However, on-line adaption in model-free tracking faces one key problem: Each update of the tracker may introduce an error which, finally, can lead to tracking failure (drifting). ...

PART II

Classifier Grid

We want to build a system which runs 24 hours a day, 7 days a week!

Further simplifying the problem in order that we can use a fixed update strategy, which do not suffer from the drifting problem.

Background Model as Binary Classification

Current Frame

vs. Image Statistics

Background Model

initial time

statistic predictable background

statistic non predictable background

H SI (1998)

Basic Components

Grid of classifier

• Use a fix update rule

- Pos Update: patch
- Negative Update: "Any Image"

[Grabner et al., VISAPP, 2007, PETS 2007]

Grid-based Object Detector

Object Detection

Background Modeling

Swiss Federal Institute of Technology Zurich

High Level Knowlede

Including prior knowledge, e.g., Scene Calibration...

PART III

Using the Classifier Grid

Albert Einstein

System 2007

"Is Pedestrain Detecion Really a Hard Task?" Grabner, Roth, Bischof, PETS 2007

Classifier Grid

One On-line classifier for each grid element

Simple Problem in time and space.

Fixed Update Rules for C_i

- Positive updates
 - From a fix set

Correct by definition

- Negative updates
 - Current patch

$$\langle \mathbf{x}_{i,t}, -1
angle$$

 Correct most of the time, wrong with

$$P(\mathbf{x}_i = \text{person}) = \frac{\#p_i}{\Delta t}$$

On-line Classifier

- Any On-line learning algorithm
 - Must cope with some (low) label noise
 - Fading memory (forgetting)
 - Good generalization (e.g. maximum margin classifier)
- Updates
 - Only **ONE (mean person)** pos. path was used for the experiments

Result and Comparison

[Dalal and Triggs, CVPR 2005.]

[Hoiem, Efros and Hebert, CVPR 2006]

This approach

Result: Qualitative Comparisons

Toy Example Results

ROC

Convergence Speed

Confidence of a Patch over Time

I'm **NOT** a simple Background Model

Extension: System 2009

"Classifier Grids for Robust Adaptive Object Detection",

Roth, Sternig, Grabner, Bischof, CVPR 2009

Fixed Update Rules

- Positive updates
 - From a fix set

Correct by definition

- Negative updates
 - Current patch

$$\langle \mathbf{x}_{i,t}, -1
angle$$

 Correct most of the time, wrong with

$$P(\mathbf{x}_i = \text{person}) = \frac{\#p_i}{\Delta t}$$

Fixed Update Rules

On-line Classifier

Combination of simple image features using on-line Boosting as Feature Selection

[Viola, Jones CVPR 2001] [Grabner, Bischof, CVPR 2006]

Off-line boosting

Reweighting the training examples

[Freund and Schapire 1997, Oza and Russell, 2001]

Boosting for Feature Selection

Each feature corresponds to a weak classifier

Principle: Modification of the Feature Selection Process

Feature Selection

Summary

Method	Positive Updates	Negative Updates
General Object Detector	No	
Adaptive Detector	Some sort of supervision	
Background Model	Natural Image Statistics	Current Patch
Classifier Grid 2007	Predefined Positive Set	Current Patch
Now	No (Precalculated Statistics)	Current Patch
	Positive Class specifies the object of Interest and is fix! Adaptation is done only be negatives (Scene/location/time specific)	

Andrew Zisserman

☺; AZ's response to "a" question ask in our seminar.

Results: PETS 2006

Results: Caviar

Results: Cars

H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab

H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab

Long Term Experiment (several days)

NO DRIFT!

H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab

Object Detection Solved.

Conclusion

Focus on the problem

- Making things simple
 - Classifier Grid
 - Fix update rules

- ABC
 - Approaches, Benefits and Cares

Your choice...

Thank you for your attention

Binneter

Comments and current work

Object Detection Solved.

Object Detection Solved?

Does it fail? If yes, when?

Are there limitations? If yes, what are the main limitations?

Problems

Hehe, there are still many misses and false detections!

Reasons: Occlusion, Context,...

Result and Comparison

[Dalal and Triggs, CVPR 2005.]	[Hoiem, Efros and Hebert, CVPR 2006]	This approach	Conservative learning (scene adaption)
	IS V	IS V	X
	and the second second		and a start of the

Summary

Method	Positive Updates	Negative Updates
General Object Detector	No	
Adaptive Detector	Some sort of supervision	
Background Model	Natural Image Statistics	Current Patch
Classifier Grid 2007	Predefined Positive Set	Current Patch
Classifier Grid 2009	No (Precalculated Statistics)	Current Patch
Now	Using an Object Tracker	Background Image

Really Focusing on the Specific Scene!

Coping with occlusions

Tracking, Detection and Recognition should be seen as ONE problem!

Any problems?

Acknowledgments

Luc van Gool Severin Stalder

EU-project SCOVIS under grant agreement no 216465.

Institute for Computer Graphics and Vision Graz, University of Technology, Austria

Horst Bischof

15

Sabine Sternig

In conjunction with ICCV 2009

3rd On-line Learning for Computer Vision Workshop 2009

Kyoto, Japan, October 3, 2009

CALL FOR PAPER

SUBMISSION DEADLINE: June 19, 2009

Organizer:

Fatih Porikli, MERL Horst Bischof, TU-Graz Helmut Grabner, ETHZ

Invited Speacker: Pietro Perona, CALTECH

Program Committee: Matt Brand, Tat-Jen Cl Cetin, Rama Davis, Ahmed E Juoliang Fan, Riad Hammoud, Omar Javed Qiang Ji, Jiri Matas, Peter Meer, Nikunj Oza, Peter Roth, Venkatesh Saligrama, Stan Sclaroff, David Suter, Oncel Tuzel, Lior Wolf

We invite you to participate in the 3rd On-line Learning for Computer Vision Workshop (OLCV'09) which will be held in junction with ICCV Kyoto, Japan. The Vvision.ee.ethz.ch/olcv2009 ested in providing

- Theoretical characterizations.
- Work towards a solid framework for benchmarking on-line learning algorithms

Important Dates:

Submission of full papers Notification of acceptance Submission of camera ready papers Workshop

June 19, 2009 July 20, 2009 August 31, 2009 October 3, 2009