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Outline
Approaches

„simplifing“
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Visual Object
Detection

Lessons
Learned
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Object Detection
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�� �
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Challenges 1: View Point Variation

[Fei Fei, Torralba, Fergus 2005-2008]
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Challenges 2: Illumination
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Challenges 3: Occlusion
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Challenges 4: Scale
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Challenges 5: Deformation
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Challenges 6: Background Clutter
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Challenges 7: Intra-class Variation
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Challenges 8:  Local Ambiguity

[Torralba]
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Challenges 8:  Local Ambiguity
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Challenges 9: 
The world behind the image   
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Recovering 3D geometry from single 2D 
projection 

Infinite number of 
possible solutions! 

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 18



Video Surveillance
left luggage 
detection

people 
identification

potential aggressive persons

thieving

loitering

people tracking unusual event 
detection

house breaking

object monitoring

vandalism
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Video Surveillance
left luggage 
detection

people 
identification

potential aggressive persons

FOCUS: Object Detection
thieving

loitering

people tracking unusual event 
detection

house breaking

object monitoring

vandalism
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FOCUS: Object Detection



Is this (nowadays) really our problem?
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Datasets

PETS
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i-LidsCaviar
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Crowds
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Occlusions/Self Occlusions
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Occlusions
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Other moving objects
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Similar Objects
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Real-life Working conditions

Cameras not stabilized!
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Real-Time

manualautomatical
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How can this be done?

??

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 30



Benefits
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Benefits

Few object 

Static camera
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Prior knowledge

Few object 
classes

(pedestrians, 
cars,…)

Multi camera
systems
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When trying to solve some 
problem, one should not 

solve a more difficult 
problem as an 

intermediate step.
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Vladimir Vapnik

intermediate step.
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PART I

Object Detectors
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Object Detection
Input Sequence Detection

Fixed Camera Setup
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Person Detection: (i) Background Modelling

Compare

Input image Current background model
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Update
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Background Modeling

Compare

Update
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Easy to implement,
good results but…
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… strong assumptions
(moving objects,…)
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Appearance Model

Object

Generative Model

Background
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Discriminative Model



Sliding Window

� Detection: Evaluation on many sub-images

Post -
Apply 

Post -
processingApply 

classifier
exhaustively

[Viola/Jones, CVPR 2001]
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Machine Learning

Nemo

Chairs

Supervised Learning
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Three main issues

� Representation
� How to represent an object (category)

� Learning� Learning
� How to form the classifier, given training data

� Recognition
� How the classifier is to be used on novel data
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Learning-based Methods in Vision

Learning as last resort.

We are trying to solve 
problems that do not 

have a solution!  
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have a solution!  

� This will be done using Data:
� E.g. what happened before is 

likely to happen again
� Google Intelligence (GI): The AI 

for the post-modern world!
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Learning-based Methods in Vision

The aim of computer 
vision is to overfit to our 

visual world.

remark by Antonio Torralba
(after his third beer)
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Person Detection
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[Felzenszwalb et al. CVPR 2008]



Stable, always the
same result

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 

Has to cope with ALL
possible situations!
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Context
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Context ���� Prior Knowledge

[ Hoiem,  Efros and Hebert, CVPR 2006]
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Context ���� Prior Knowledge

[ Hoiem,  Efros and Hebert, CVPR 2006]
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Context ���� Prior Knowledge

[ Hoiem,  Efros and Hebert, CVPR 2006]
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Context ���� Prior Knowledge

[ Hoiem,  Efros and Hebert, CVPR 2006]
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Simpler problem
as before!
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Some kind of
post-processing 

(reduce false positive 
rate), classifier
stays the same!
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PART II

Adaptive Object 
Detectors

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 53



Object Detection as Binary Classification

vs.

object background

vs.

2008/11/06 Scovis Meeting 54Department of Information Technology and Electrical  Engineering – Computer Vision Laboratory2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 54



Off-line learning
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On-line Learning

Teacher

On-line

-+

Labeled Data

-+ -+
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On-line Learning

Teacher

On-line Focus on an “easier”, may 
time depended problem .

-+

Labeled Data

-+ -+
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time depended problem .



Object Detection

vs.

object background

vs.
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Adaptive Object Detection

vs.

object background

vs.
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specific specific
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Simpler problem
as before!

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 

How to update the 
classifier?
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“Fewer Clicks - Less Frustration”

� Active Learning
Image

Detections

Classifier

Classifier

Labels
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Minimize hand
labeling
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The Supervisor!
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A 3D Teacher
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A 3D Teacher

Image
Detections

Classifier

Labels
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Classifier



Conservative Learning

Image
Detections

ShapeAppearance

Reconstructive model

Classifier

Labels

Pos. update Neg. updateNo update

[Roth et al. VS-PETS WS 2005]
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Classifier



Improving Performance
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More or Less no 
Hand labeling, 

Improving 
Performance
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Does it fail?
If yes, when?
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Two Issues

� Mainly Verification
� Reduce false positive rate

� Update Strategies
� Oracle� Oracle
� Verification
� Co-training
� Self-training
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“Fewer Clicks - Less Frustration”

Human Interactions
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3D Teacher

Verification using Redundancy
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On-line Conservative Learning

Verification using Classifiers
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Problems of…

Label Jitter

-

+

Label Noise

+
+
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Btw: Relation to Object Tracking

… However, on-line adaption 
in model-free tracking faces 

one key problem: Each one key problem: Each 
update of the tracker may 
introduce an error which, 

finally, can lead to tracking 
failure (drifting). … 
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PART II

Classifier Grid
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We want to build a system which runs
24 hours a day, 7 days a week!

FurtherFurther
simplifying the problem

in order that we can use a
fixed update strategy ,

which do not suffer from the drifting problem.
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Background Model as Binary Classification

Current FrameCurrent Frame

Image
Statistics

vs.
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Background Model
initial time

statistic predictable background statistic non predictable background
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Basic Components

� Grid of classifier � Use a fix update rule
� Pos Update: patch
� Negative Update: “Any 

Image”

[Grabner et al.,VISAPP, 2007, PETS 2007]
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Grid-based Object Detector

Object

Background
vs.

Current Frame

Image
Statistics

vs.

Object Detection Background Modeling
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ADAPTIVE MODEL

High level reasoning and feedback
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ADAPTIVE MODEL
improved detection, tracking,

speed

Low level observations
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ADAPTIVE MODEL

High level reasoning and feedback

Fix rules

Only “Parameter”
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ADAPTIVE MODEL
improved detection, tracking,

speed

Low level observations

Fix rules

Only “Parameter”
adaptation
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ADAPTIVE MODEL

High level reasoning and feedback

Fix rules

Only “Parameter”

No dependencies between the update 
and the current model
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ADAPTIVE MODEL
improved detection, 

tracking, speed

Low level observations

Fix rules

Only “Parameter”
adaptation

and the current model
���� stable by design
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High Level Knowlede

� Including prior knowledge, e.g., Scene Calibration…

Camera 1Camera 1

Camera 2

Camera 3

Camera 4

Groundplane
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PART III

Using the Classifier Grid
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Classifier should be applicable Training set Complexity

Fixed
Detector

Scene
specific

Grid based
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Everything should be 
made as simple as 
possible, but not 

simpler.

Albert Einstein
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Grid-based Person Detector

System 2007

“Is Pedestrain Detecion Really a Hard Task?”
Grabner, Roth, Bischof, PETS 2007
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Classifier Grid

� One On-line classifier for each grid element

Simple Problem in time and space.
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Fixed Update Rules for C i

� Positive updates
� From a fix set

� Negative updates
� Current patch

� Correct by definition

� Correct most of the time, 
wrong with
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On-line Classifier

� Any On-line learning algorithm
� Must cope with some (low) label noise
� Fading memory (forgetting)
� Good generalization (e.g. maximum margin classifier)

� Updates� Updates
� Only ONE (mean person) pos. path was used for the experiments
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Result and Comparison

This approach[Dalal and Triggs, 
CVPR 2005.]

[ Hoiem, Efros and 
Hebert, CVPR 2006]
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Result: Qualitative Comparisons
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Toy Example Results

ROC Convergence Speed
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Confidence of a Patch over Time
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I‘m NOT a simple Background Model
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Grid-based Person Detector

Extension: System 2009

“Classifier Grids for Robust Adaptive Object 
Detection ”,

Roth, Sternig, Grabner, Bischof, CVPR 2009
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Fixed Update Rules

� Positive updates
� From a fix set

� Negative updates
� Current patch

� Correct by definition

� Correct most of the time, 
wrong with
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Fixed Update Rules

� Positive updates
� From a fix set

� Negative updates
� Current patch

Deeper look into the underlying 
principles…

� Correct by definition

� Correct most of the time, 
wrong with

principles…

���� More Stable and robust.

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 100



On-line Classifier

Combination of simple image features
using on-line Boosting as Feature Selection

[Viola, Jones CVPR 2001]
[Grabner, Bischof, CVPR 2006]
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Off-line boosting

Strong classifier Weak classifier
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[Freund and Schapire 1997,
Oza and Russell, 2001]

Reweighting the 
training examples



Boosting for Feature Selection

Each feature corresponds to a weak classifier

h(x)

[Tieu and Viola. CVPR 2000]
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Principle: Modification of the Feature Selection 
Process

Generative model
for Object of interest

Generative model
for Background
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Discriminate Classifier
On Feature Level
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Feature Selection

Dj
+

fixed

discriminative
threshold
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fj(x)

Dj
-

variable
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Summary

Method Positive Updates Negative Updates

General Object Detector No

Adaptive Detector Some sort of supervision

Background Model Natural Image Statistics Current Patch

Classifier Grid 2007 Predefined Positive Set Current PatchClassifier Grid 2007 Predefined Positive Set Current Patch

Now
No 

(Precalculated Statistics)
Current Patch
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Positive Class specifies the object of 
Interest and is fix!

Adaptation is done only be negatives 
(Scene/location/time specific)
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O.k., Imaging all the 
clever thinks you can do 

– we did them all.

Andrew Zisserman
☺☺☺☺; AZ’s response to “a” question
ask in our seminar.
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Results: PETS 2006
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Results: Caviar
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Results: Cars
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Long Term Experiment
(several days)
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(several days)

NO DRIFT!



Object Detection
Solved.
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No.
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Conclusion

� Focus on the problem

� Making things simple

� Classifier Grid
� Fix update rules

� ABC

� Approaches, Benefits and Cares
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Your choice…

Thank you for your attention

Comments and
current work
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Object Detection
Solved.
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No.
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Object Detection
Solved?

2009/04/16 Vienna H. Grabner, Simplifying Object Detection... - ETH-Zurich, Computer Vision Lab 

Does it fail?
If yes, when?

Are there limitations?
If yes, what are the main 

limitations?
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Problems

� Hehe, there are still many misses and false detections!

GOAL

� Reasons: Occlusion, Context,…
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Result and Comparison

This approach Conservative learning
(scene adaption)

[Dalal and Triggs, 
CVPR 2005.]

[ Hoiem, Efros and 
Hebert, CVPR 2006]
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Unlabeled data
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Thomas Bayes

121

Transfer learning, Semi-Supervised 
Learning



Summary

Method Positive Updates Negative Updates

General Object Detector No

Adaptive Detector Some sort of supervision

Background Model Natural Image Statistics Current Patch

Classifier Grid 2007 Predefined Positive Set Current PatchClassifier Grid 2007 Predefined Positive Set Current Patch

Classifier Grid 2009 No 
(Precalculated Statistics)

Current Patch

Now Using an Object Tracker Background Image
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Really Focusing on the 
Specific Scene!
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Coping with occlusions
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Tracking, Detection 
and Recognition 

should be seen as 
ONE problem!
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Any problems?
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3rd On-line Learning for Computer Vision
Workshop 2009

In conjunction with ICCV 2009

Kyoto, Japan, October 3, 2009

CALL FOR PAPER

We invite you to participate in the 3rd On-line Learning for Computer Vision
Workshop (OLCV'09) which will be held in junction with ICCV in Kyoto, Japan. The
workshop will bring together computer vision researches interested in providing

Organizer:
Fatih Porikli, MERL

SUBMISSION DEADLINE: June 19, 2009

workshop will bring together computer vision researches interested in providing
solid foundations to this promising and challenging area.

Topics:
The topics of interest include, but are not limited to:

• On-line methods for object detection and tracking,
• Active learning for object identification and recognition,
• Incremental fusion of multi-modal data,
• Applications using on-line classification methods, and
• Theoretical characterizations.
• Work towards a solid framework for benchmarking on-line learning algorithms

Important Dates:
Submission of full papers June 19, 2009
Notification of acceptance July 20, 2009
Submission of camera ready papers August 31, 2009
Workshop October 3, 2009

Fatih Porikli, MERL
Horst Bischof, TU-Graz
Helmut Grabner, ETHZ

Invited Speacker:
Pietro Perona, CALTECH

Program Committee:
Matt Brand, Tat-Jen Cham,  Enis

Cetin, Rama Chellappa, Larry 
Davis, Ahmed Elgammal, Guoliang
Fan, Riad Hammoud, Omar Javed
Qiang Ji, Jiri Matas, Peter Meer, 

Nikunj Oza, Peter Roth, Venkatesh
Saligrama, Stan Sclaroff, David 

Suter, Oncel Tuzel, Lior Wolf
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