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Machine
learning

Lessons
Learned



Tracking by fast (re-) detection

actual object position

from time t to t+1Time t „find“ again

actual object position
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Tracking Cues

� Object Appearance

� Background

Object/Background
discrimination

� Object Boundary

� Motion
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[Grabner et al. VideoProc.CVPR 2006]
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Tracking Requirements

� Adaptive

� Robustness� Robustness

� Generality
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PART I

On-line Boosting based 
Tracking

2006



Boosting and Vision

� Boosting

� Boosting for Feature Selection

� On-line boosting

[Tieu and Viola. CVPR 2000], [Viola and Jones, CVPR 2001]

[Freund and Schapire, JCSC, 1997]

� On-line boosting

� On-line Boosting for Feature Selection

� Several Improvements:
� E.g., on-line WaldBoost, Asymetric on-line Boosting,…
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[Grabner and Bischof, CVPR 2006]

[Oza and Russel, AIS, 2001]



Off-line learning
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On-line learning

Learning Algorithm
Teacher

Labeled Information
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Off-line boosting

Strong classifier Weak classifier

Reweighting the 
training examples
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On-line Boosting
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On-line Boosting

Converges to the 
off -line result!
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off -line result!



Boosting for Feature Selection (1) 

Combination of Simple Image Features
for distinguishing two classes
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Boosting for Feature Selection (2)

� Each feature corresponds to a 
weak classifier

� Features
� Haar-like wavelets

� Orientation histograms

� Locally binary patterns (LBP)

� Color Features

� Fast computation using efficient 
data structures
� integral images

� integral histograms
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The concept of Selectors

selects one feature from its
local feature pool

Boosting is performed on 
the Selectors and not on 

the weak classifiers 
directly.
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On-line Boosting for Feature Selection
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On-line Boosting for Feature Selection

General approach 
for on -line feature 

 

for on -line feature 
selection.
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Tracking as Classification

object

background
vs.
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Tracking as Classification

object

background
vs.
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search Region

actual object position

from time t to t+1 evaluate classifier on sub-patches

-

+

- -

-

create confidence map
analyze map and set new

object positionupdate classifier (tracker) 
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Object 
Detector

Fixed Training set
General object detector

Off-line Boosting for 
Feature Selection

Object Tracker

On-line update
Object vs. Background

On-Line Boosting for 
Feature Selection
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[Grabner et al, CVPR 2006, BMVC 2006,]



LESSON LEARNED 1

Tracking is a simple task!
(When formulating it properly)
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“Simple tracking”
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“Tracking the Invisible”
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Tracking Solved ☺☺☺☺
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Does it fail?
If yes, when?



When does it fail…
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When does it fail…

Often, all too 
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Often, all too 
often!



When does it fail…

WHY?
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WHY?



search Region

actual object position

from time t to t+1 evaluate classifier on sub-patches

-

+

- -

-

create confidence map
analyze map and 

set new object 
position 

update classifier (tracker) 

Self-learning

2009/03/23  Oxford 31H. Grabner, Tracking for Learning and Lessons Learned from it - ETH-Zurich, Computer Vision Lab



Drifting due to self-learning policy

Tracked Patches Confidence
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LESSON LEARNED 2

Self-learning →→→→ drifting!



PART II

Semi-Supervised On-line 
Boosting for Tracking

2008



Review: Supervised Tracking
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Problems of…

Label Jitter

-

+
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Label Noise

Label Jitter

+
+



Semi-Supervised Tracking

Un-labeled
data
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Labeled data



Supervised learning

+ -+ -

+ -

Maximum margin
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Can Unlabeled Data Help?
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decision
boundary in low 
density region
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Semi-Boosting

“Boosting with a 

?
+ +

“Boosting with a 
graph inspired 
regularization”+

-
[Leistner, Grabner, Bischof, CVPR 2008]
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Boosting
SemiBoost

Boosting
SemiBoost
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Similarities as Prior Classifier

xi

xj
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Semi-
Boost

?
?

?
?

?

-

+

Classifier Improvement

?

Note, this is NOT a simple sum-rule, since 
training of H(x) depends on H P(x)!
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Face Detector Improved Results
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Going on-line…

� Off-line classifier serves as prior (similarity measure)

� Both, label and importance of the example are adjusted � Both, label and importance of the example are adjusted 
during training for each selector n
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Semi-Supervised On-line Boosting

++ + ?

-
?
?

?

?

?

?
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Semi-Supervised On-line Boosting

fix

“stable”

dynamicfix

Nobody is perfect!
But, be a honest Teacher!

Hoff can be wrong with low confidence.

dynamic
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Tracking Loop

search Region

actual object position

evaluate classifier on 
sub-patches

Prior

create confidence mapupdate classifier (tracker) 

??

?
?
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Semi-Supervised Tracking

Prior
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Labeled data

Un-labeled
data



Robust Semi-supervised Tracking
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LESSON LEARNED 3

On-line Semi-supervised
learninig →→→→ limited learninig →→→→ limited 

drifting.
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Robust Tracking
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Long term tracking (1h)

Click here to start
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Conclusion

Tracking is 
simple

Self-learning →→→→
driftingdrifting

All Lessons 
Learned?

Semi-Supervised 
learning
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Your choice…

Thank you for your attention

1 further:
“lesson learned”
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PART III

Beyond Learning,
Learning Everywhere

now



Tracking Solved ☺☺☺☺
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Does it fail?
If yes, when?
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Prior is too 
generic ( e.g, dirft

2009/03/23  Oxford 61H. Grabner, Tracking for Learning and Lessons Learned from it - ETH-Zurich, Computer Vision Lab

generic ( e.g, dirft
to similar objects)
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Prior restricts too 
much (e.g., partial 

2009/03/23  Oxford 63H. Grabner, Tracking for Learning and Lessons Learned from it - ETH-Zurich, Computer Vision Lab

much (e.g., partial 
occlusions)



LESSON LEARNED 4

Prior is essential in semi-
supervised learning.supervised learning.

(c.f., Stability Plasticy
Dilemma)



Review: Supervised Tracking
To adaptive
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Review: Semi-Supervised Tracking
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Limit drifting but to
restrictive/general



Detection
Add information!

Non adaptive at all!



Adaptive Prior

Additional 
information

for prior update
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…
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…
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Long term tracking (24h)
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Click here to start



LESSON LEARNED 5

Vision is more then pure 
Machine Learning!Machine Learning!

(keep problems simple)
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3rd On-line Learning for Computer Vision
Workshop 2009

In conjunction with ICCV 2009

Kyoto, Japan, October 3, 2009

CALL FOR PAPER

We invite you to participate in the 3rd On-line Learning for Computer Vision
Workshop (OLCV'09) which will be held in junction with ICCV in Kyoto, Japan. The
workshop will bring together computer vision researches interested in providing

Organizer:
Fatih Porikli, MERL

SUBMISSION DEADLINE: June 19, 2009

workshop will bring together computer vision researches interested in providing
solid foundations to this promising and challenging area.

Topics:
The topics of interest include, but are not limited to:

• On-line methods for object detection and tracking,
• Active learning for object identification and recognition,
• Incremental fusion of multi-modal data,
• Applications using on-line classification methods, and
• Theoretical characterizations.
• Work towards a solid framework for benchmarking on-line learning algorithms

Important Dates:
Submission of full papers June 19, 2009
Notification of acceptance July 20, 2009
Submission of camera ready papers August 31, 2009
Workshop October 3, 2009

Fatih Porikli, MERL
Horst Bischof, TU-Graz
Helmut Grabner, ETHZ

Invited Speacker:
Pietro Perona, CALTECH

Program Committee:
Matt Brand, Tat-Jen Cham,  Enis

Cetin, Rama Chellappa, Larry 
Davis, Ahmed Elgammal, Guoliang
Fan, Riad Hammoud, Omar Javed
Qiang Ji, Jiri Matas, Peter Meer, 

Nikunj Oza, Peter Roth, Venkatesh
Saligrama, Stan Sclaroff, David 

Suter, Oncel Tuzel, Lior Wolf
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