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a b s t r a c t

Modelling and classification of time series stemming from visual workflows is a very challenging
problem due to the inherent complexity of the activity patterns involved and the difficulty in tracking
moving targets. In this paper, we propose a framework for classification of visual tasks in industrial
environments. We propose a novel method to automatically segment the input stream and to classify
the resulting segments using prior knowledge and hidden Markov models (HMMs), combined through
a genetic algorithm. We compare this method to an echo state network (ESN) approach, which is
appropriate for general-purpose time-series classification. In addition, we explore the applicability of
several fusion schemes formulticamera configuration in order tomitigate the problemof limited visibility
and occlusions. The performance of the suggested approaches is evaluated on real-world visual behaviour
scenarios.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Intelligent visual surveillance and classification of visual tasks
are research fields that have rapidly gainedmomentumover recent
years. Focusing on industrial plant smart monitoring, the aim is
to recognise tasks happening in the scene, to monitor the smooth
running of a workflow, and to detect any abnormal behaviour.
Deviations from the workflow may cause severe deterioration of
the quality of the product or may raise safety or security hazards.

An example of such an industrial scenario is shown in Fig. 1. By
monitoring industrial scenes, one faces several challenges such as
recording data in work areas (camera positions and viewing area),
industrial working conditions (sparks and vibrations), cluttered
background (upright racks and heavy occlusion of the workers),
high similarity of the individual workers (nearly all of them
wearing a similar utility uniform), and other moving objects
(weldingmachines and forklifts). Furthermore, the dynamics of the
workflow can be quite complex. Several tasks within a workflow
can have very different lengths and can be permutable. The high
intraclass and low interclass variances make the classification
process significantly challenging. Moreover, the tasks can include
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both human actions and motions of machinery in the observed
process.
Related work. Behaviour and workflow recognition has attracted
the interest of many researchers. In the computer vision and
machine learning communities, this is mainly addressed in
applications such as abnormal behaviour recognition or unusual
event detection. Many approaches have been suggested over
recent years—reviews can be found in (Poppe, 2010; Turaga,
Chellappa, Subrahmanian, & Udrea, 2008). Typically they build
a model of normality, and the methods can differ in (i) the
model used, (ii) the algorithm employed for learning the model
parameters, and (iii) the features used.Modelsmight be previously
trained and kept fixed (Antonakaki, Kosmopoulos, & Perantonis,
2009; Wang, Ma, Ng, & Grimson, 2008) or adapt over time
(Breitenstein, Grabner, & Gool, 2009) to cope with changing
conditions. A broad variety of extracted image features are used,
such as global scene three-dimensional (3D) motion (Padoy,
Mateus, Weinland, Berger, & Navab, 2009) or object trajectories
(Antonakaki et al., 2009; Johnson & Hogg, 1996; Nguyen, Phung,
Venkatesh, & Bui, 2005; Shi, Huang, Minnen, Bobick, & Essa,
2004), which require accurate detection and tracking. On the other
hand, holistic methods, which define features at the pixel level
and try to identify patterns of activity using them directly, can
bypass the challenging processes of detection and tracking. Such
methods may use pixel or pixel group features such as colour,
texture, or gradient; see, for example, (Zelnik-Manor & Irani, 2006)
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Fig. 1. Example of an industrial scenario: the workflow consists of several tasks of different length, which can be permutable (e.g., tasks 3 and 4 in this example), and the
scene may present irrelevant motion and occlusions.

(histograms of spatiotemporal gradients) and (Laptev & Perez,
2007) (spatiotemporal patches). Pixel change history (PCH) is
used in (Xiang & Gong, 2006) to represent each target separately
after frame differencing. However, the representation of objects
in PCH images is very simplistic (through ellipses), and cannot
cope with realistic environments. A popular feature to use for
action recognition is optical flow (see, e.g., Efros, Berg, Mori, &
Malik, 2003),where a relatively small region of interest is extracted
around a single human actor. In our case we need a much more
efficient method, since our goal is online classification at high
frame rates. Furthermore, in real applications, the targets may be
partially occluded, so action recognition as defined in works such
as (Efros et al., 2003) would not be feasible.

Various machine learning and statistical methods have been
used for activity recognition, such as clustering (Boiman & Irani,
2005) and density estimation (Johnson & Hogg, 1996). A very
popular approach is hidden Markov models (HMMs) (Ivanov &
Bobick, 2000; Lv & Nevatia, 2006; Padoy et al., 2009), due to
the fact that they can efficiently model stochastic time series at
various time scales. However, the HMMs assume that the input
data are already segmented, an assumption which significantly
limits their application in realistic applications. For this purpose,
more complex HMM-based methods have been proposed such
as hierarchical HMMs (HHMMs) (Fine, Singer, & Tishby, 1998;
Padoy et al., 2009) and layered HMMs (LHMMs) (Oliver, Garg,
& Horvitz, 2004). However, the applicability of these methods
assumes that the Markovian assumption holds for the tasks to
be recognised, in other words the probability for the appearance
of a task depends only on the previous one; this is not true
in structured applications, where the execution of a task may
influence the appearance of a series of following tasks. In such
cases, the Markovian assumption would be an oversimplification,
whichwould violate the application constraints. The use of higher-
ordermodels would result in very high complexity (Rabiner, 1989)
and would raise issues such as ‘‘how many previous states do we
have to consider?’’. With a small number of tasks the problem
could be still tractable; however, such approaches are not scalable
to large numbers of tasks.

In (Shi et al., 2004), the feasible task paths in a glycose
calibration process were defined, using the so-called P-net to
encode possible paths. The goals in our work are similar, but
here we aim to show how to employ the HMM framework for
recognising tasks in workflows, because of its very important
extension possibilities (for example, with fusion (Zeng, Tu,
Pianfetti, & Huang, 2008) or robustness (Chatzis, Kosmopoulos, &

Varvarigou, 2009)); furthermore, we are going to encode possible
paths as solutions provided by a genetic algorithm to cover a huge
search space efficiently.

An alternative approach to the HMM for the analysis of
complex dynamical systems is echo state networks (ESNs) (Jaeger,
2001). ESNs offer several benefits, such as (i) fast and simple
learning of many outputs simultaneously, (ii) the possibility of
both offline and online learning, (iii) the capability of directly
dealing with high-dimensional input data, and (iv) the ability to
learn complex dynamic behaviourswithout any explicitMarkovian
assumption. On the other hand, there are two main limitations
involved: (i) they can only recognise repetitive dynamics and (ii)
all significant variations of task order in a given workflow have
to be learnt to provide the best classification results. Previously,
ESNs have been successfully used for time-series classification
in speech recognition (Skowronski & Harris, 2007), human–robot
interactions (Hellbach, Strauss, Eggert, Komer, & Gross, 2008),
emotion recognition (Scherer, Oubbati, Schwenker, & Palm, 2008),
and medicine (Verplancke et al., 2010). Recently, we examined
the effectiveness of ESNs for workflow recognition from a single
camera (Veres, Grabner, Middleton, & Gool, 2010).

Nevertheless, the target visibility of specific tasks can be
limited due to camera configuration and self-occlusions; therefore
efficient ways to fuse observations from multiple cameras are
necessary. Several fusion schemes for HMMs have been presented
in the past, such as synchronous HMMs (Dupont & Luettin,
2000), parallel HMMs (Vogler & Metaxas, 1999), and multistream
fused HMMs (Zeng et al., 2008). However, their applicability in
multicamera systems has been examined only to a limited extent,
for example in (Voulodimos, Grabner, Kosmopoulos, Van Gool, &
Varvarigou, 2010), a previouswork that is extended in this paper to
address online behaviour and workflow recognition in continuous
data streams, and in (Kosmopoulos & Chatzis, 2010), where offline
classification of segmented sequences was examined. As far as
ESNs are concerned, to our knowledge no fusion techniques have
been employed for similar applications.
Contribution. To our knowledge, no state-of-the-art tracking-
based approach is able to cope with the significant particular
challenges (as described above) ofworkflow analysis in continuous
streams within industrial environments. We tried state-of-the-art
methods for person detection/tracking (Felzenszwalb, McAllester,
& Ramanan, 2008; Grabner & Bischof, 2006)1; however, none

1 The code was downloaded from the authors’ webpages.
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(a) Person detection (Felzenszwalb et al., 2008). (b) Person tracking (Grabner & Bischof, 2006).

Fig. 2. Examples of state-of-the-art methods for detection and tracking. These approaches fail because of the dataset’s significant challenges, such as severe occlusions and
cluttered background.

of them showed stable and robust results in our industrial
environment. Fig. 2(a) shows typical failures of the detector in
our dataset, with a recall of 24% and a precision of only 9%. Thus,
tracking-by-detection approaches (e.g., Huang, Wu, & Nevatia,
2008) cannot be used to generate trajectories. Also, the person
could be hardly tracked, as displayed in Fig. 2(b). As for the tracker,
it may start very well; however, it soon loses the person and drifts
away.

The reasons for the failures pertain to the nature of the environ-
ment, i.e., significant occlusions, clutter similar in structure/shape
to a person, the workers coloured similarly to the racks, and un-
stable background due to welding flare, machinery operation, and
lighting changes. Any of these in isolation would cause problems
for person detection and tracking, but all of them together make
the problem especially difficult for both detection and tracking,
and prohibit the use of approaches based on trajectory analysis.

Hence, we choose to use holistic features, which can be
efficiently computed, do not rely on target detection and tracking,
and can be used to model complex scenes (Veres et al., 2010). We
contribute to the solution in the following ways.

• We propose a novel method to automatically segment the
input stream and to classify the resulting segments using prior
knowledge and HMMs, combined through a genetic algorithm
(GA).

• We compare this approach to an online ESN-based method for
time-series analysis of continuous streams.

• We suggest using fusion schemes for multiple cameras to
provide wider scene coverage, and to better cope with
occlusions, thus improving the accuracy.

The rest of this work is organised as follows. Section 2 formally
defines the problem. In Section 3, we describe scene descriptors.
Sections 4 and 5 describe the HMM-based fusion architectures
and the proposed continuous stream segmentation method, while
Section 6 presents the proposed GA–HMM that combines HMM
classifications of the automatically segmented tasks and prior
knowledge. In Section 7, the ESN-based approach addressing
fusion is described. Section 8 is the experimental section, while
Section 9 discusses the lessons learnt from our research and
concludes the paper.

2. Problem formulation

Our goal is to monitor a predefined repetitive workflow. We
describe a workflow as a sequence of defined tasks that have
to be executed in some order, which is however not strict;
i.e., permutations are allowed. A task is a sequence of observations
that corresponds to a physical action such as ‘‘pick up object and
place it somewhere’’.

Let It ∈ ℜ
n×m be the grey-scale image at time t . Given an image

sequence I = {I0, . . . , It} and a set of L + 1 possible tasks, L#
=

{1, . . . , L,#}, where # corresponds to a task not related to the
workflow (void), we want to associate a task l⋆t ∈ L# with each
image It at time t , using past and present measurements. This can
be seen as a temporal L + 1 class classification problem.

In the case of C different cameras, the fusion problem can be
stated in a similar way: the difference lies in the number of given
image sequences Ic = {Ic,0, . . . , Ic,t}, 0 < c < C .

3. Scene representation

Features extracted from the raw pixel values should be
discriminative enough to capture relevant changes with respect to
the tasks but at the same time be invariant to irrelevant variations.
A wide variety of different features have been proposed over the
years, representing image appearance, shape, ormotion.Motivated
by the fact that theworkflow consists of object interactions, we use
motion as our primary feature cue. To encode it robustly we use
local motion classifiers (LMCs) (Adam, Rivlin, Shimshoni, & Reinitz,
2008; Veres et al., 2010).

An LMC M(x,y) observes a position (x, y) and the surrounding
(n×m) pixel neighbourhoodΩ(x,y) of the image. The binary output
of a motion monitor applied on the image It is defined as follows:

M(x,y)(It) =

1 if


(i,j)∈Ω(x,y)

|It(i, j) − It−1(i, j)| > θM

−1 otherwise.
(1)

Frame differencing is used to get changes of the image. If the
changes are significant (specified by θM ) within Ω(x,y), the LMC
M(x,y) returns a positive response. The LMCs can be seen as features
that extract high-level information from each image.

A motion grid is defined as a set of LMCs. We sample an
input image by using a fixed overlapping grid. Each grid element
corresponds to an LMC. For one time instance t , we concatenate
the output of the LMCs within the grid into a vector. The motion
grid matrix is used as input for the classifiers:

ot = [o(1,1)
t , . . . , o(x,y)

t , . . . , o(n,m)
t ], where

o(x,y)
t =


M(x,y) if (x, y) ∈ Rrel
not used otherwise . (2)

The features employed bear similarities to optical flow, since
they are based on the sum of pixel differences of the difference
image. The difference image itself can be seen as an approximation
to the magnitude of the optical flow; however, our method is
significantly faster compared, for example, to (Efros et al., 2003).
Furthermore, it captures the location information in the image and
not in space, as, for example, in (Nguyen et al., 2005), which would
probably require object detection. The occlusions do not affect the
extracted features, as long as they create consistent patterns.
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(a) Feature fusion. (b) Parallel fusion. (c) Multistream fusion.

Fig. 3. Various fusion schemes using the HMM framework for two streams: feature fusion (mere concatenation of observation vectors), parallel fusion (independent
individual streams), and multistream fusion (cross-coupling between the streams).

4. HMM-based multicamera fusion

The HMM is a very flexible framework that can be tailored to
the needs of several applications, one of them being the fusion
of multiple streams. An HMM entails a Markov chain comprising
N states, with each state being coupled with an observation
emission distribution. An HMM defines a set of initial probabilities
{πk}

N
k=1 for each state, and a matrix A of transition probabilities

between the states; each state st is associated with an emitted
observation ot . Gaussian mixture models are typically used for
modelling the observation emission densities of the HMM hidden
states. However, they are well known to be highly intolerant
to the presence of untypical data within the fitting datasets
used for their estimation. Finite Student’s t-mixture models
have recently emerged as a heavier-tailed, robust alternative to
Gaussian mixture models, ensuring higher tolerance to outliers.
Since our data contain outliers, we use Student’s t-distribution as
the observation model for the HMM (details of this approach can
be found in our previous work (Chatzis et al., 2009)).

In a multicamera set-up, the goal of fusion is to achieve
behaviour recognition results that are better than the results that
we could attain byusing the information obtainedby the individual
data streams. We will briefly mention in the following some
representative approaches.

Among existing approaches, feature fusion (Fig. 3(a)) is the
simplest; it assumes that the observation streams are synchronous.
For streams from C cameras and respective observations at time
t given by o1t , . . . , oCt , the proposed scheme defines the full
observation vector as a simple concatenation of the individual
observations: ot = {oct}

C
c=1.

The parallel HMM (Fig. 3(b)) assumes that the streams are
independent of each other. It can be applied to cameras that may
not be synchronised andmay operate at different acquisition rates.
Each stream c may have its own weight rc depending on the
reliability of the source. Classification is performed by selecting
the class l̂ that maximises the weighted sum of the classification
probabilities from the streamwise HMMs.

Finally, the multistream fused HMM approach (Fig. 3(c))
(Zeng et al., 2008) assumes cross-coupling between the streams
and is able to capture their interdependencies, by maximis-
ing entropy and mutual information criteria. The interstream
state–observation dependencies are generally modelled as Gaus-
sianmixturemodels. Similar to the case of parallel HMMs, the class
that maximises the weighted sum of the log likelihoods over the
streamwise models is the winner.

5. Segmentation of continuous streams

To solve the time-segmentation problem, which may under-
mine the utility of our method in real applications, we propose a
method to fully automate time segmentation. The key observations
that enable a solution in our context are: (i) the tasks are sequen-
tial but their order may vary; (ii) each task is executed only once;

(iii) the tasks have a variable duration; however, the durations of
the same tasks are statistically similar; and (iv) each task endswith
placing a part on thewelding cell. Based on the above observations,
we propose to create a model of the visible actions that signify the
termination of each of the tasks. To this end, and assuming a sin-
gle camera, at this stage we can use an HMM which is trained to
recognise the termination of a task in a fixed time windowW . The
training is effected including sequences of the same duration for
all tasks.

In the recognition phase, we employ the HMM that we trained
to recognise endings of tasks. The input sequence is defined by a
sliding time window of constant duration W , which includes the
current frame and all the previous frames that fit in that window.
We calculate the probability p(ot , ot−1, . . . , ot−W+1|λ) that the
sequence of the last W observations signifies the end of the task
using a standard forward–backward procedure (Rabiner, 1989) (ot
is the observation vector at time t andλ is the trainedHMMmodel).

Furthermore, we use prior information to model the duration
d of all tasks using a Gaussian mixture and we represent it as
p(d|t − t0), where t0 is the time when the previous task ended
(or equivalently when the current task began). Each component
of the mixture is a Gaussian probability distribution function
(pdf) of the durations of a specific task. Given that each task is
executed only once, it is reasonable to remove the components
corresponding to tasks that are recognised as finished.

The overall probability that the current task is finished in time
t is thus given by

p(et) = p(ot , ot−1, . . . , ot−W+1|λ) · p(d|t − t0). (3)

Whenever the above quantity reaches a local maximum, which
is above an experimentally defined threshold, we assume that
the sequence should be segmented. The observation vectors
corresponding to the automatically segmented tasks are buffered
and used as input to the task-specific HMMs, which will perform
the classification as soon as a new task is segmented. Eq. (3) can
be intuitively extended to incorporate observations from several
cameras, for example, using the fusion schemes described above.

6. The GA–HMM for task sequence recognition

As may happen in many workflow cases, in our application
scenario the execution of one task prohibits the reappearance of
the same task until theworkflow is over. In this section, we present
a method for how to identify the task sequence by using prior
informationwithout relying on theMarkovian assumption. For this
we consider the following probabilities (when having K tasks and
1 ≤ i ≤ K ): (a) log(task(i)): the log probability distribution for the
ith task in the task sequence (i.e., the task that appears at ith order),
(b) log(task(i)/task(i − 1)): the log probability distribution for the
ith task given its previous task. (a) is the output of the task-related
HMMs,while (b) can be learnt during training and stored as a priori
information.
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Given the above, and assuming that up to now we have k
tasks that have been executed in the workflow, we can create an
objective function, which represents the log probability of the task
sequence, as follows:

E = log p(task(1), . . . , task(k))

= w1

k
i=1

log p(task(i)) + w2

k
i=2

log p(task(i)|task(i − 1)), (4)

where w1 and w2 are constants associated to the weight of each
term.

It is therefore possible to evaluate the different task permuta-
tions according to (4) and select the one with the highest value.
However, the number of task permutations is given by K !/(K − k)!
ifwe assume that no task repetitions are allowed. ForK = 7, for the
total sequence we may have 5040 cases to evaluate; for K = 20,
there are more than 2.43 × 1018 cases; so this approach is not
scalable.

We propose a genetic algorithm to find a suboptimal, yet
tractable, solution using as objective function the above formula
for E. Therefore, we will refer to the proposed method as the
GA–HMM approach. Given the number of tasks k executed so far,
we define the vector S = [task(1), . . . , task(k)]which encodes the
task sequence so far. We allow the following operations: (a)muta-
tion: task(i) randomly changes its value to another value task(i)′,
provided that task(i)′ does not belong to S, and (b) crossover: if
we have two solutions S1, S2, we select a task1(i), task2(j) so that
task1(i) ∈ S1 and task1(i) ∉ S2, task2(i) ∉ S1 and task2(i) ∈ S2;
then we interchange their values in S1, S2. This single-value
crossover generalises for subsets of values.

By defining the mutation and the crossover probability, we are
able to obtain after a sequential evaluation a set of solutions that
will locallymaximise E. For one task,the solution is simply given by
the log probability of a single task as provided by an HMM. As the
number of segmented tasks increases by one, some initial solutions
have to be created, and the dimensionality of the solution increases
as well. For fast convergence, we use the best estimations of the
previous step complemented by some random next tasks which
did not appear in the solution vector. For example, if a solution for
the task assignment of three tasks was S = [1 3 2], some possible
initial solutions for the assignment of four tasks based on that
previous step would be S = [1 3 2 4], [1 3 2 5], [1 3 2 6], [1 3 2 7],
etc. We need to mention here that (4) can be easily modified to
handle fusion. More specifically, the first summation term can be
replaced by the associated terms for each separate stream. Another
way is to consider that this term is the result of one of the fusion
methods mentioned in Section 4.

7. ESN-based multicamera approach

The ESN is a method for online time-series analysis which does
not rely on theMarkovian assumption. The hidden layer (reservoir)
consists of N randomly connected neurons. There are neurons
which are connected to cycles, so that past states ‘‘echo’’ in the
reservoir. The neurons within the hidden layer are also randomly
connected to the k-dimensional input signal, which drives the
network. Additionally, only outputweights are adapted and learnt;
all other weights including feedback are randomly selected and
stay static.

Let ot = (o1,t , . . . , oK ,t) be the input to the network at time
t , where K is the dimensionality of a feature vector. Hidden units
are xt = (x1,t , . . . , xN,t), where N is a number of hidden states,
and output units are yt = (y1,t , . . . , yL,t), where L corresponds
to number of tasks in a workflow here. Further, let Win

N×K be the
weights for the input–hidden connection, WN×N be the weights
for the hidden–hidden connections, Wback

N×L be the weights for the

output–hidden connection, and Wout
L×(K+N+L) be the weights for

the read-out neurons, i.e., the connection from all units to the
respective read-out neurons. The activations of internal and output
units are updated at every time step by xt = f (Winot + Wxt−1 +

Wbackyt−1), where f = (f1, . . . , fN) are the hidden unit’s activation
functions. The outputs are calculated as yt = f out(Wout

[ot , xt ,
yt−1]), where f out = (f out1 , . . . , f outL ) are the output unit’s activa-
tion functions. The term [ot , xt , yt−1] is the concatenation of the
input, hidden, and previous output activation vectors.

For use on test sequences, the trained network can be driven by
new input sequences, and the output is computed as ŷt = Woutxt .

Since the individual read-out neurons are trained indepen-
dently and usually from highly unbalanced data, we propose nor-
malising the response with respect to their mean responses ȳ,
calculated on the training data. To identify a task for each time
instance the significant maximum is taken:

ŷt =


l⋆ if

max
l=1,...,L+1

yt(l) − ȳ(l)

max
l′=1,...,L+1

l⋆≠l′

yt(l′) − ȳ(l′)
> θL

L + 1 otherwise,

where l⋆ = argmax
l=1,...,L+1

yt(l) − ȳ(l). (5)

In other words, the maximum of the L+ 1 outputs is considered to
be significant if the ratio to the second highest value is above some
defined threshold θL. This threshold influences the precision of our
method, and it is set up manually by trial and error during training
stage.

Regarding fusion methods, feature fusion is achieved by con-
catenating the scene descriptors for each camera view. As in the
HMM case, the observation streams either have to be synchron-
ous or some synchronisation procedure should be applied to these
streams. Then an ESN is trained using yt = f out(Wout

[[o1
t , . . . ,

oKn
t ], xt , yt−1]), where Kn is the number of cameras. Parallel fusion

is performed by weighted summing of the respective ESN outputs
for all streams, and the result is taken as a label.

8. Experiments

To verify experimentally the applicability of the described
methods in real world, we have acquired very challenging videos
from the production line of a major automobile manufacturer.2
Each day the same workflow is performed many times in the
production line. Two partially overlapping views were used.

8.1. Experimental set-up

We recorded approximately 8 h of video from a single working
cell (including gaps between workflows and breaks). The dataset
was captured by two PTZ (pan–tilt–zoom) cameras. We recorded
data at 25 fps with relative jitter bounded by 1.6% on the
frame rate with resolution of 704 × 576 pixels. The workspace
configuration and the camera positions are shown in Fig. 4.
According to the manufacturing requirements, each workflow
consists of the following six tasks, which are not necessarily
executed sequentially.
Task 1: A part from Rack 1 (upper) is placed on the welding spot

by worker(s).
Task 2: A part from Rack 2 is placed on the welding spot by

worker(s).
Task 3: A part from Rack 3 is placed on the welding spot by

worker(s).
Task 4: Two parts from Rack 4 are placed on the welding spot by

worker(s).

2 The dataset is publicly available through http://www.scovis.eu/.

http://www.scovis.eu/
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Fig. 4. Schematic representation of the car assembly environment indicating the positions of the racks, the welding cells, and the cameras.

Task 5: A part from Rack 1 (lower) is placed on thewelding spot by
worker(s).

Task 6: A part from Rack 5 is placed on the welding spot by
worker(s).

Moreover, we introduce task 7, which is essential for continu-
ous time-series modelling:
Task 7: Any frame in which no actions from tasks 1–6 take place

(void).

The order inwhich the tasks are executed is not purely random:
there are loose patterns and dependencies, which are incorporated
in the framework through the approach described in Section 6.
Given that most tasks start and end in the welding area, it is
difficult to identify, sometimes even by eye, which task the frame
belongs to at the start/end of the task. We have annotated being
aware that the labelling accuracy is approximately five frames.
Moreover, some tasks can have overlapping paths for a number
of frames. In addition, there are tasks that bear great visual
resemblance, e.g., tasks 1 and 5. In the workflow, the duration of
the tasks is different, while the duration of the same task changes
fromone instance to another. All of these difficulties, togetherwith
the severe occlusions in the car assembly environment, present
challenges to workflow monitoring and task recognition.

8.2. Implementation details

Here, we give specific implementation details of our methods,
which allow reproduction of our results.
Local motion classifiers. The initial motion grid matrix was
calculated for 140 patches overlaid onto the whole image. The size
of patches (local motion region) was selected as Ω = 100 × 100
with an overlap of 0.5, i.e. 50% of each patch. The activationmotion
threshold is set to θM = 250.
Prior knowledge. The human operatormanually specifies the region
where theworkflow instances can potentially take place, including
the welding machine for each camera. In fact, 65 LMCs in the top
half of the image were selected for Camera 1 and 106 LMCs for
Camera 2, which form the LMCs for each frame. Our approach
would work without this manual definition; however, we would
have unrelated motion in the scene, which would require a
significantly larger training set. Furthermore, the prior knowledge
acquisition concerns learning of the pdfs p(d|t − t0), as well as of
p(task(i)|task(i − 1)) for all tasks. The learning is effected through
the available training samples in each cross-validation cycle.

Classification of segmented sequences. For each of the seven tasks,
a dedicated three-state HMM with a single component per
state was trained (for each camera stream). For the mixture
model representing the interstream interactions in the context
of the multistream fused HMM, we use mixture models of two
component distributions. These experiments were conducted for
the case of individual stream HMMs, as well as feature fusion,
parallel, and multistream fused HMMs. In all cases, we trained
our models using the expectation–maximisation (EM) algorithm,
and we used the multivariate Student’s t-distribution as the
observation model of the HMMs.
Sequence segmentation. A two-state HMM with six mixture
components per state was trained to model the ending of tasks
(1–6), as described in Section 5. Based on the statistics of
the dataset, we selected the time window W , which signifies
the end of a task, to equal 50. Whenever a new task was
automatically segmented, it was tested in each of the six models
to acquire the related log probability, which in combination to
the prior knowledge provided the input to the genetic algorithm.
Regarding task 7 (void), every time a new task was segmented,
we checked the forthcoming sequence through temporal windows
to determine whether it corresponded to the void task; this
was practically recognised when the log probability surpassed an
experimentally set threshold.
Echo state network. We applied a plain ESN with 3000 hidden
units, 65 inputs, and 7 outputs for Camera 1 and a plain ESN with
3000 hidden units, 106 inputs, and 7 outputs for Camera 2 to
obtain single stream results. The number of states was selected
to achieve a trade-off between the training time and generative
properties of the trained ESN based on experimental runs by
changing number of hidden states from 100 to 12000. Although
increasing the number of hidden states to 10000 can improve the
ESN results by between1% and6%on average for a given instance of
workflow, the training time could be increased by an order of two.
We used the ESN toolbox written in MATLAB by Jaeger et al..3 The
spectral radius was |λ| = 0.98, and the input scaling and teacher
scaling (Jaeger, 2001) were chosen as 0.1 and 0.3, respectively.
Furthermore, additional noise was added to the ESN during the
training process to improve the stability. Median filtering with a
filter length of 51 was performed at the post-processing stage,
i.e., on predicted labels.

3 http://www.reservoir-computing.org/node/129,2009/08/05.

http://www.reservoir-computing.org/node/129,2009/08/05
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(a) Cam 1—GA–HMM. (b) Cam 2—GA–HMM. (c) Feature fusion—GA–HMM.

(d) Parallel fusion—GA–HMM. (e) Multistream—GA–HMM.

Fig. 5. Confusion matrices in the GA–HMM approach: individual camera streams, feature fusion, parallel fusion, and the multistream fused HMM (attaining the best
performance).

For feature fusion, we trained the ESN with 3500 hidden units,
171 inputs, and 7 outputs, where 171 inputs (features) consist of
concatenation of features for Camera 1 and Camera 2. The parallel
fusion was achieved by weighted summing of the corresponding
outputs of two ESNs and selecting the outputwithmaximumvalue
as a label for a given frame.

8.3. Evaluation and results

In the dataset, 20 instances of workflow and their tasks were
manually labelled. Each workflow instance consists of 3550 to
9100 frames, which correspond to 2–5 min. The LMCs were
calculated in real time (20–25 fps). Four-fold cross-validation
was performed, with testing sets including scenarios 1–5, 6–10,
11–15, and 16–20, while the remaining instances of workflow
each time were used for training. ESN training took approximately
15min using theMATLAB implementation on a 2.83GHz computer
running Windows Vista. However, testing could be done very
efficiently online at 20 fps. HMM training was performed in
approximately 2 min, and testing of a sequence of 1000 vectors,
for example, in less than 10 s.

For a quantitative evaluation, we used recall–precision mea-
surements. Recall corresponds to the correct classification rate
(number of true positives divided by total number of positives in
ground truth), whereas precision relates to the trust in a classifica-
tion (number of true positives divided by number of true and false
positives). The F-measure is the harmonic mean of these twomea-
surements.

In the following we present how both GA–HMM-based and
ESN-based approaches coped with task recognition using single

stream data from Camera 1 and Camera 2, respectively, and by fus-
ing features and labels from both views. Additionally, multistream
fusion was examined for the GA–HMM-based approach.

Regarding sequence segmentation, the results showed that the
method proposed in Section 5 led to segmentation times rather
close to the ones in ground truth. In particular, the mean and
standard deviation values of the absolute difference (in frames)
between the estimated segmentation time and the ground truth
task end time averaged across all tasks of all testing sequences
were as follows. Camera 1: 16.8 ± 12.9, Camera 2: 11.5 ± 10.3,
feature fusion: 19.1 ± 16.8, parallel fusion: 11.3 ± 10.2, and
multistream fusion: 10.1 ± 8.1. Segmentation from Camera 2 was
more successful than that from Camera 1, which can be explained
by the former’s generally better viewpoint to the welding cell,
where all task endings take place. Moreover, multistream fusion
provided a small but notable improvement, by decreasing the
average absolute error in relation to ground truth to merely 10
frames.

The results shown in Table 1 indicate that the proposed
GA–HMM approach using LMC features attained very good
recognition rates. Camera 2’s individual stream yielded better
results than Camera 1, since the former offers a generally better
viewpoint. Feature fusion and parallel fusion achieved rates lower
than and roughly equal to the best single stream, respectively. The
multistream fused HMM-based approach provided the maximum
recall, precision, and F-measure, as it succeeded in effectively
capturing the interdependencies between the two streams. The
confusion matrices in Fig. 5 also reflect the superiority of the
multistream method, but also indicate that for tasks whose order



8 A. Voulodimos et al. / Neural Networks ( ) –

Table 1
Performance of GA–HMM for all 20 testing workflow instances—Student’s t-distribution.

Camera 1 (%) Camera 2 (%) Feature fusion (%) Parallel fusion (%) Multistream (%)

Recall 86.0 ± 22.5 89.8 ± 12.5 75.5 ± 24.1 89.9 ± 11.8 90.3 ± 12.0
Precision 85.6 ± 22.4 90.0 ± 12.5 74.8 ± 24.2 90.0 ± 11.9 90.4 ± 12.1
F-measure 85.8 ± 22.4 89.9 ± 12.5 75.1 ± 24.1 89.9 ± 11.8 90.3 ± 12.1

Table 2
Performance of ESN for all 20 testing workflow instances.

Camera 1 (%) Camera 2 (%) Feature fusion (%) Parallel fusion (%)

Recall 59.3 ± 13 73.5 ± 8.4 74.5 ± 11 76.2 ± 10.3
Precision 55.6 ± 13 72.8 ± 8.7 74.3 ± 12 76.3 ± 11.2
F-measure 57.3 ± 13 73.1 ± 8.5 74.3 ± 11.5 76.2 ± 10.6

(a) Cam 1—ESN. (b) Cam 2—ESN. (c) Parallel—ESN.

Fig. 6. Confusion matrices in the ESN approach—individual camera streams and the parallel fusion scheme (attaining the best results for ESN).

is more statistically variant (i.e., tasks 4, 5, 6) the recognition rates
were lower.

As far as the ESN-based approach is concerned, it shows
significantly better results for Camera 2 in comparison to Camera 1
(Table 2) due to the significantly lower level of occlusions.
Combining these two single streams by feature or parallel fusion
allowsus to achieve average recall of 74.5% and76.2%, respectively,
with parallel fusion slightly outperforming feature fusion.

Confusion matrices (Fig. 6) indicate that the most difficult task
for monitoring was task 1, with correct classification rates (CCRs)
of 34.5% and 55.2% for single stream cases. Using parallel fusion
allowed us to increase the CCR for this task to 67.9%. Although this
task is well separated from the manufacturing requirements point
of view, it is not that easy to distinguish it from other tasks using
the video recordings, since it shares the same paths as other tasks
for some periods of time.

In this application, GA–HMM outperformed ESN according to
recall, precision, and F-measures on 20 instances of workflow. This
was probably due to the fact that the GA–HMM structure makes
it possible to encode the task sequences in a hierarchical fashion
using application-specific prior knowledge. On the other hand, the
ESN is a general-purpose classifier, which seeks to capture patterns
in observation sequences; the prior information is captured only
implicitly and requires a large number of nodes. Recently it was
demonstrated that despite the fact that ESNs are not based on
the Markovian property, in practice they are influenced more by
recent states, which of course makes the memorisation of series of
past tasks quite hard (Gallicchio & Micheli, 2011). In contrast, the
GA–HMM has no such problem because it explicitly encodes the
whole task history.

9. Conclusion

In this paper, we have addressed the issue of online recognition
of visual tasks and workflows in complex industrial environments.
To this end the employment of holistic features based on a
grid time matrix so as to bypass the challenging tasks of
detection and tracking, which are usually unsuccessful in such
environments, leads to a very satisfactory representation. We
proposed theGA–HMM,which is anHMMendowedwith amethod
to automatically segment the input stream and to exploit prior
knowledge through a genetic algorithm. By doing so, we could
take advantage of the versatile HMM architecture, for example, by
incorporating elaborate fusion methods (Zeng et al., 2008) or
robustmodels (Chatzis et al., 2009) for online stream classification.
We scrutinised the effectiveness of this approach and compared it
to an ESN-based approach. The GA–HMM approach outperformed
the ESN, although the latter’s performance is influenced by
the topological complexity and consequently the training time
required. The ESN offers a simpler,more straightforward approach,
which can yield satisfactory results when the training time can be
compromised. A plus of the ESN is the automated segmentation
of sequences, while GA–HMM relies on the ability to detect
the task segments. Neither approach depends on the Markovian
assumption to extract the sequences of tasks. However, as was
recently shown, the ESN is practically influenced more by the
most recent observations, so it is naturally expected to have more
difficulties in classifying long sequences of tasks.

Fusion of multiple camera streams provided added value in
many cases. Between the fusion methods employed for both
GA–HMM and ESN, the parallel fusion method exploited the
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redundancies between the different streams more effectively
compared to feature fusion. The latter method assumes strict
synchronisation, which is not the case in our setting. The benefits
of fusion were more apparent in the ESN, where there was
bigger room for improvement. Finally, the GA–HMM based on the
multistream fused HMM could better capture interdependencies
between streams and led to the highest recognition rates among
all approaches.

Finally, the proposed method can be easily employed in other
workflows, simply by modifying the constraints of the solution
given by the genetic algorithm accordingly, for example by
allowing repetitions of tasks, omissions, etc. It is also scalable,
because the underlying fusion methods are not limited by the
number of streams.
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