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Abstract. Monitoring real world environments such as industrial scenes
is a challenging task due to heavy occlusions, resemblance of different pro-
cesses, frequent illumination changes, etc. We propose a robust frame-
work for recognizing workflows in such complex environments, boasting
a threefold contribution: Firstly, we employ a novel holistic scene de-
scriptor to efficiently and robustly model complex scenes, thus bypassing
the very challenging tasks of target recognition and tracking. Secondly,
we handle the problem of limited visibility and occlusions by exploit-
ing redundancies through the use of merged information from multiple
cameras. Finally, we use the multivariate Student-t distribution as the
observation likelihood of the employed Hidden Markov Models, in order
to further enhance robustness. We evaluate the performance of the exam-
ined approaches under real-life visual behavior understanding scenarios
and we compare and discuss the obtained results.

Key words: robust workflow recognition, Hidden Markov Models, Clas-
sifier Grids, multi-camera fusion

1 Introduction

Event understanding in video sequences is a research field rapidly gaining mo-
mentum over the last few years. This is mainly due to its fundamental applica-
tions in automated video indexing, virtual reality, human-computer interaction,
assistive living and smart monitoring. Especially throughout the last years we
have seen an increasing need for assisting and extending the capabilities of hu-
man operators in remotely monitored large and complex spaces such as public
areas, airports, railway stations, parking lots, industrial plants, etc.
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Fig. 1. Sequences from the dataset. The relatively low resolution and the several oc-
clusions and self occlusions make very difficult the task of tracking thus necessitating
holistic features and a robust model to recognize workflows. The first two rows depict
two different tasks that would be difficult to distinguish even for the human eye; the
third row shows some example frames of occlusions, outliers, and other challenges faced
in this industrial dataset.

Focusing on industrial scenes, the serious visibility problems, the heavy oc-
clusions, along with the high diversity, complexity or sometimes resemblance
of the behaviors and events taking place, make workflow recognition extremely
challenging. In this paper the case study is an assembly line of an automobile
manufacturer, where several different tasks are performed, and a sequence of
specific tasks forms a workflow. The goal of recognizing these tasks (classes) and
workflows is even more difficult to achieve when taking into consideration the
high intraclass and low interclass variance, as shown in Fig. 1. Typical meth-
ods tend to fail in such environments, since they rely on object detection and
tracking, which are rarely successful under such circumstances. To overcome the
aforementioned problems, we propose a robust framework for workflow recogni-
tion that contributes to the solution in the three following ways:

– We propose new holistic features, which can be efficiently computed, do not
rely on target detection and tracking and can be used to model complex
scenes, thus resulting in robust input.

– In addition, we include redundant data by using multiple cameras in order to
provide wider scene coverage, solve occlusions and improve accuracy. This is
achieved by fusing time series of the above mentioned holistic image features,
which is, according to our knowledge, a novel approach.

– Moreover, we scrutinize the effectiveness of the multivariate Student-t distri-
bution, instead of the Gaussian, as the observation likelihood of the employed
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Hidden Markov Models (HMMs), so as to solve the problem of outliers and
further enhance the robustness of the model.

The rest of this work is organized as follows. In Sec. 2 we briefly survey
the related work. Sec. 3,4 and 5 describe details of our approach, with respect
to efficiency and robustness respectively. In Sec. 6 we verify our methods ex-
perimentally on a real-world dataset from an assembly line of an automobile
industry. Finally, Sec. 7 concludes the paper.

2 Related work

The field of behavior and workflow recognition has attracted the interest of
many researchers. Holistic methods, which define features at the pixel level and
try to identify patterns of activity using them directly, can bypass the challeng-
ing processes of detection and tracking. Such methods may use pixel or pixel
group features such as color, texture or gradient, see e.g. [1] (histograms of spa-
tiotemporal gradients), [2] (spatiotemporal patches). Of particular interest due
to efficiency and representation of motion are approaches such as [3], which intro-
duced Motion Energy Images (MEIs) and Motion History Images (MHIs), and
[4], where Motion History Volumes are extracted from multiple cameras. Pixel
Change History is used in [5] to represent each target separately after frame dif-
ferencing. What is needed to model complex scenes is a representation that will
be able to operate in any adverse condition effected by occlusions, illumination
changes or abrupt motion.

As far as multiple cameras are concerned, to our knowledge no previous work
has investigated fusion of holistic time series. The works on multicamera behavior
recogition that have been reported so far try to solve the problem of position or
posture extraction in 3D or on ground coordinates (e.g. [6, 7]). However, camera
calibration or homography estimation is required and in most cases there is still
dependency on tracking or on extraction of foreground objects and their position,
which can be easily corrupted by illumniation changes and occlusions.

Concerning the classification part, a very popular approach is HMMs ([8],
[9], [10]) due to the fact that they can efficiently model stochastic time series at
various time scales. Several fusion schemes using HMMs have been presented,
which were typically used for fusing heterogeneous feature streams such as audio-
visual systems, but can be applied to streams of holistic features from multiple
cameras as well. Such examples are the early fusion, the synchronous HMMs
[11], the parallel HMMs [12] and the multistream HMMs [13]. The reliability
of each stream has been expressed by introducing stream-wise factors in the
total likelihood estimation as in the case of parallel, synchronous or multistream
HMMs.

3 Robust scene representation

Classifier grids were initially introduced to perform background modeling [14].
In this approach, an input image It is spatially (location and scale) sampled with
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a fixed highly overlapping grid. For each grid element i, an adaptive classifier
Ci is created. These classifiers can now be used in a static camera setting in
order to aggregate scene and location specific information. Classifier grids have
been successfully used for pedestrian detection, e.g. [15]. Experiments show that
very good detection results can be achieved compared with the sliding window
technique, which uses a fixed pre-trained classifier which scans the whole image.

In our work, we propose to use the output of the classifier grid as scene
descriptor. In other words, the local classifiers can be seen as features which
extract “high level” information from each image. Hence, our proposed approach
analyses time series, and afterwards all classifier responses are concatenated into
one vector. These vectors observed over time t define finally the grid time matrix.
The principle is depicted in Fig. 2.

(a) Input image (b) Classifier grid (c) Grid time matrix

Fig. 2. Grid time matrix composition: An input image (a) is analyzed by a highly
overlapping grid of classifiers (b). Classifier responses are concatenated over time and
used as holistic image description.

4 Multi-view learning

The goal of automatic behavior recognition may be viewed as the recovery of a
specific learned behavior (class or visual task) from the sequence of observations
O. Each camera frame is associated with one observation vector and the obser-
vations from all cameras have to be combined in a fusion framework to exploit
complementarity of the different views. The sequence of observations from each
camera composes a separate camera-specific information stream, which can be
modelled by a camera-specific HMM.

The HMM framework entails a Markov chain comprising a number of N
states, with each state being coupled with an observation emission distribution.
An HMM defines a set of initial probabilities {πk}Nk=1 for each state, and a matrix
A of transition probabilities between the states; each state is associated with a
number of (emitted) observations O (input vectors). Gaussian mixture models
are typically used for modeling the observation emission densities of the HMM
hidden states. Given a learned HMM, probability assignment for an observation
sequence is performed.
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(a) HMM using fusion at the fea-
ture level

(b) State synchronous HMM

(c) Multistream fused HMM (d) Parallel HMM

Fig. 3. Various fusion schemes using the HMM framework for two streams.

In a multicamera setup each sensor stream can be used to generate a stream
of observations. The ultimate goal of multicamera fusion is to achieve behavior
recognition results better than the results that we could attain by using the
information obtained by the individual data streams (stemming from different
cameras) independently from each other. We will examine in the following some
representative approaches, which can support scalable behavior recognition with
several overlapping cameras.

Among existing approaches Feature fusion is the simplest; it assumes that
the observation streams are synchronous. The related architecture is displayed
in Fig. 3(a). For streams from C cameras and respective observations at time t
given by o1t,..., oCt, the proposed scheme defines the full observation vector as
a simple concatenation of the individual observations: ot = {oct}Cc=1. Then, the
observation emission probability of the state st = i of the fused model, when
considered as a k-component mixture model, yields:

P (ot|st = i) =

K∑
k=1

wikP (ot|θik) (1)

where wik denotes the weights of the mixtures and θik the parameters of the kth
component density of the ith state.

In the state-synchronous multistream HMM (see Fig. 3(b)) the streams are
assumed to be synchronized. Each stream is modelled using an individual HMM;
the postulated streamwise HMMs share the same state dynamics. Then, the like-
lihood for one observation is given by the product of the observation likelihood
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of each stream c raised to an appropriate positive stream weight rc [11]:

P (ot|st = i) =
∏

c=1..C

[

K∑
k=1

wikP (oct|θik)]rc (2)

The weight rc is associated with the reliability of the information carried by the
cth stream. Another alternative is the parallel HMM (see Fig. 3(c)); it assumes
that the streams are independent from each other. This HMM model can be
applied to cameras that may not be synchronized and may operate at different
acquisition rates. Similar to the synchronous case, each stream cmay have its own
weight rc depending on the reliability of the source. Classification is performed
by selecting the class l̂ that maximizes the weighted sum of the classification
probabilities from the streamwise HMMs:

l̂ = argmax
l

([

C∑
c=1

rclogP (o1...oT |λcl)]) (3)

where λcl are the parameters of the postulated streamwise HMM of the cth
stream that corresponds to the lth class.

The multistream fused HMM is another promising method for modeling of
multistream data [13] (see Fig. 3(d)) with several desirable features: (i) it is
appropriate for both synchronous and asynchronous camera networks; (ii) it has
simple and fast training and inference algorithms; (iii) if one of the component
HMMs fails, the remaining HMMs can still work properly; and (iv) it retains
the crucial information about the interdependencies between the multiple data
streams Similar to the case of parallel HMMs, the class that maximizes the
weighted sum of the log-likelihoods over the streamwise models is the winner.

5 Robustness to outliers

Outliers are expected to appear in model training and test data sets obtained
from realistic monitoring applications due to illumination changes, unexpected
occlusions, unexpected task variations etc, and may seriously corrupt training
results. Here we propose the integration of the Student-t distribution in our
fusion models, in order to address the problem.

The probability density function (pdf) of a Student-t distribution with mean
vector µ, positive definite inner product matrix Σ, and ν degrees of freedom is
given by:

t (xt;µ,Σ, ν) =
Γ
(
ν+p
2

)
|Σ|−

1
2 (πν)

− p
2

Γ
(
ν
2

)
{1 + d (xt, µ;Σ) /ν}

ν+p
2

(4)

where Γ (.) denotes the gamma function and d the Mahalanobis distance. The
heavier tails of the Student-t distribution compared to the Gaussian ensure
higher tolerance to outliers. The Gaussian distribution is actually a special case
of the Student-t for ν → ∞. Recently, it has been shown that the adoption
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of the multivariate Student-t distribution in the observation models allows for
the efficient handling of outliers in the context of the HMM framework with-
out compromising overall efficiency [16]. Based on that we propose the following
adaptations in the above fusion schemes: For the feature fusion, synchronous,
parallel and multistream models we use the Student-t pdf as predictive function
for the streamwise models. We use a modified EM training algorithm and solve
numerically to obtain ν. For the interstream fusion model we employ a mixture
of Student-t functions to increase robustness.

6 Experiments

We experimentally verified the applicability of the described methods. For this
purpose, we have acquired very challenging videos from the production line of a
major automobile manufacturer5. Two synchronized, partially overlapping views
are used. Challenges include occlusions, similar colors of the individual people
clothing and the background, and real-working conditions, such as shaking cam-
eras and sparks.

Experimental setup. The production cycle on the production line included tasks
of picking several parts from racks and placing them on a designated cell some
meters away, where welding took place. Each of the above tasks was regarded as
a class of behavioral patterns that had to be recognized. A specific sequence of
those tasks constitutes a workflow. The information acquired from this procedure
can be used for the extraction of production statistics or anomaly detection. The
workspace configuration and the cameras’ positioning is given in Fig. 4. The
behaviors we are aiming to model in the examined application are briefly the
following:

1. A worker picks part #1 from rack #1 and places it on the welding cell.
2. Two workers pick part #2a from rack #2 and place it on the welding cell.
3. Two workers pick part #2b from rack #3 and place it on the welding cell.
4. A worker picks parts #3a, #3b from rack #4 and places them on the cell.
5. A worker picks part #4 from rack #1 and places it on the welding cell.
6. Two workers pick part #5 from rack #5 and place it on the welding cell.
7. Welding: two workers grab the welding tools and weld the parts together.

For our experiments, we have used 20 segmented sequences representing full
assembly cycles, each one containing each of the seven behaviors/tasks. The
total number of frames was approximately 80,000. The videos were shot by two
PTZ cameras at an approximate framerate of 25 fps and at a resolution of
704 × 576. The annotation of these frames has been done manually. For more
dependable results, in our experiments we used cross-validation, by repeating the
employed training algorithms several times, where in each repetition all scenarios
are considered except for one used for testing (leave-one-out cross-validation).

5 We are currently investigating legal issues of making the dataset publically available.
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Fig. 4. Depiction of workcell along with the position of the cameras and racks #1-5.

Representation and feature extraction. We created a classifier regular grid with
overlap 0.5 (50%). Each frame was eventually represented by a 42-dimensional
feature vector. For learning and adapting the classifiers we have used a sim-
ple motion based heuristic. Each local classifier learns a simple background
model [17]. As classification function, the amount of moving pixels, i.e. the dif-
fernce between the current image and the background model, is used. For each
stream corresponding to a different viewpoint we have selected a region of inter-
est, to which the classifier grids have been applied, as the activity taking place
in the remaining area of the frame is noise.

Learning. We trained our models using the EM algorithm. We used the typical
HMM model for the individual streams as well as feature fusion, synchronous,
parallel and multistream HMMs. We experimented with the Gaussian observa-
tion model as well as with the multivariate Student-t model. We used three-state
HMMs with a single mixture component per state to model each of the seven
tasks described above, which is a good trade-off between performance and effi-
ciency. For the mixture model representing the interstream interactions in the
context of the multistream HMM we use mixture models of two component
distributions.

Results. The obtained results of the experiments are shown in Fig. 5. It becomes
obvious that the sequences of our features and the respective HMMs represent
quite well the assembly process. Information fusion seems to provide significant
added value when implemented in the form of the multistream fused HMM, and
about similar accuracy when using parallel HMMs. However, the accuracy dete-
riorates significantly when using simple feature level fusion or state-synchronous
HMMs, reflecting the known restrictions of these approaches.

The confusion matrices in Fig. 6 show the percentage of successful and un-
successful task recognitions averaged across all classes (tasks). A look at the
matrices would justify the complementarity between the two camera streams
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(a) Single camera (b) Fusion

Fig. 5. Success rates obtained using Student-t distribution and (i) individual HMM
for camera 1 (HMM1); (ii) individual HMM for camera 2 (HMM2); (iii) feature-level
fusion (FEAT); (iii) state-synchronous HMMs (SYNC); (iv) parallel HMMs (PARAL)
and (v) multistream fused HMMs (MSTREAM)

(a) Camera 1 (HMM1) (b) Camera 2 (HMM2) (c) Multistream fusion

Fig. 6. Confusion matrices for individual tasks.

due to the different viewpoints. Camera 1 performs well for task number 2 and 7
while camera 2 performs better for the rest. For example, camera 1’s viewpoint is
such, that discerning task 1 from task 5 is extremely difficult - even for a human -
hence the low success rates in these particular tasks; on the contrary, camera 2’s
viewpoint is much better for viewing tasks 1 and 5 and therefore allows for a sig-
nificantly higher performance, which can be confirmed by noticing the confusion
matrices. This complementarity of the two streams results in the improvement
of the accuracy by the streams’ fusion when the latter is implemented as a mul-
tistream fused HMM. Finally, the employment of the Student-t distribution as
observation likelihood of the employed HMM provides additional improvement
from 81.43% (Gaussian) to 83.44% (Student-t) in recognition rates.

7 Conclusion

It has been shown that a fused holistic scene representation, which uses a grid
time matrix, is very well suited for monitoring and classifying well structured
processes such as the production tasks in an assembly line. Using the proposed
holistic features to bypass the challenging tasks of detection and tracking, which
are usually unsuccessful in such environments, leads to a rather satisfactory
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representation. Furthermore, exploiting redundancies by fusing time series from
multiple cameras using the multistream fused HMMs results in higher recog-
nition rates than those achieved when employing one single camera. Finally,
employing an outlier-tolerant observation model based on the Student-t mul-
tivariate distribution instead of the Gaussian further enhances accuracy and
robustness.
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