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Abstract In this work we present a robust object detection
system for static cameras, which is suitable for real-time
applications. Thus, the system has to cope with changes
of environmental conditions, which is realized by adaptive
on-line learning a scene specific classifier. In particular,
we apply the ideas of grid-based classification, where each
image patch corresponds to one classifier. Thus, the com-
plexity of the detection task is reduced and a more compact
and thus more efficient representation can be applied. The
main contribution of this paper is to introduce three learn-
ing strategies to improve the performance of grid-based de-
tectors: (a) pre-selecting features to assure a more efficient
representation, (b) pre-training the positive representation,
and (c) combining off-line and on-line learning. The exper-
imental results on person and car detection show that these
strategies significantly improve the overall performance of
the detection system. In addition, a long-term experiment
demonstrates that the proposed system is stable over time
and can thus be applied for real-world tasks.

1 Introduction
Detecting and tracking of objects are important tasks in
computer vision. Especially, for surveillance applications,
where the behavior of persons or unusual events should be
detected, object detection is the very first task in the process-
ing queue. Typically for object detection a sliding window
is applied. Each patch of an image is tested if it is consis-
tent with a previously estimated model or not. Finally, all
consistent patches are reported. These models are mostly
based on local features in connection with a classifier, (e.g.,
AdaBoost, Winnow, neural network, support vector ma-
chine, or PCA), which is obtained by learning. Hence, when
discussing the problem of object detection, implicitly, the
problem of visual learning is addressed.

The goal of all such methods is to build a fixed generic
object model that is applicable for all possible scenarios and
tasks. But even if detectors are trained from a large num-
ber of samples they often fail in practice. This is illustrated
in Figure 1, where we show the changing illumination con-
ditions over 24 hours. The results shown in the first row
are obtained by a fixed generic model. It can be seen that
(a) Static object detector.

(b) Adaptive object detector.

Figure 1: Changing environmental conditions (e.g., lighting
changes or changes of objects in the background) arise the need
of a system to be adaptive to changes: (a) detection result obtained
by a fixed detector and (b) detection results obtained by an adaptive
detector.

even for a rather simple scenario the precision is quite low
(i.e., there are a lot of false alarms). This is the result of an
insufficient not-representative training set (i.e., not all vari-
ability, especially in the background, can be captured). In
contrast, the results in the second row are obtained by an
adaptable object detection system. Assuming a static cam-
era the system can adapt to the changing environmental con-
ditions and those variabilities have not to be handled by the
learned model. In addition, the complexity of the task is
reduced.

The main problem of adaptive systems is drifting. An
object detection system starts drifting, if it is adapted in a
wrong way, which leads the system to detect something dif-
ferent than the object of interest. Hence the main goal in
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this paper is to develop an adaptive but still robust object
detection system that runs over a long period of time with-
out drifting. We address this problem by using the ideas of
grid-based object classification (e.g., [8, 7]). In contrast, to
sliding window approaches the main idea is to apply a sepa-
rate classifier on each image location (grid element). Thus,
the complexity of the classification task that a single clas-
sifier has to handle can drastically be reduced. In addition,
to avoid the drifting problem a fixed update strategy can be
applied [7]. But such update schemes have two main short-
comings. First, they tend to be over-adaptive and second due
to the simple positive update strategy either a huge amount
of data has to be stored in memory or the variability for more
complex objects can not be handled. In this paper, we pro-
pose two strategies that overcome these problems.

As a third contribution, we introduce a pre-training step
that improves the quality of selected features during on-
line learning. These benefits are demonstrated in the ex-
periments, where we extensively compare the proposed ap-
proach to state-of-the art methods for person and car detec-
tion. In addition, in a long-term experiment we show that
our system is stable over time, even if 150,000 updates were
performed.

The paper is organized as follows. In Section 2 we review
the main ideas, which build the basis of our work. Next, in
Section 3 we introduce and discuss our new robust adaptive
grid-based detector. The benefits of the proposed approach
are demonstrated in Section 4. Finally, we summarize and
conclude the paper in Section 5.

2 Preliminaries
2.1 Classifier Grid
The main idea of classifier grids (e.g., [8, 7]) is to sample an
input image by using a fixed highly overlapping grid, where
each grid element i = 1, . . . , N corresponds to one clas-
sifier Ci. This is illustrated in Figure 2. Thus, the classi-
fication task that has to be handled by one classifier Ci is
reduced to discriminate the background of the specific grid
element from the object-of-interest. Due to this simplifica-
tion less complex classifiers, which can be evaluated and
updated more efficiently, can be applied.

Figure 2: Concept of grid-based classification: a highly overlap-
ping grid is placed over the image, where each grid element corre-
sponds to a single classifier.

In addition, we can take advantage of knowing the scene
calibration (i.e., we know the ground-plane), which is illus-
trated in Figure 3. Typically, as illustrated in Figure 3(a), a
single classifier is evaluated on different positions and differ-
ent scales. In contrast, if the approximative size of an object
is known, as illustrated in Figure 3(b), the search space can
be reduced.

(a) General approach for object
detection, where each position in
the image is evaluated on differ-
ent scales.

(b) Scale information (if avail-
able) can be used to determine the
size of a grid element, which in-
creases the performance.

Figure 3: Including scene information reduces the search space.

2.2 Fixed Update Rules
Having a classifier grid such as defined in the previous sec-
tion a compact classifier can be trained using an on-line
learning method. But on-line systems have one main dis-
advantage: new unlabeled data has to be robustly included
into an already built model. More formally, at time t given
a classifier Ct−1 and an unlabeled example xt ∈ IRm, the
classifier predicts a label yt ∈ {+1,−1} for xt, which can
further be used to generate the label ŷt, which is then used
to update the classifier: Ct = update(Ct−1, 〈xt, ŷ〉).

Typical update schemes (i.e., label generators) for on-
line learning are self-training (e.g., [15, 12]) and co-training
(e.g., [2, 11]). But these update strategies suffer from the
drifting problem. A classifier that was trained using many
incorrect updates would yield many false positives and/or
the detection rate would decrease. Further on, since the clas-
sifier response is used for labeling new samples, this would
result in a self-fulfilling prophecy. In fact, self-training or
co-training, which rely on a direct feedback of the current
classifier, must be avoided.

Considering the constraints of the grid-based classifier
structure, the labels ŷt can be generated without a feedback
of Ci,t−1 by using the following fixed update rules:

Positive updates: Given a set of positive (hand) labeled ex-
amples X+. Then, using

〈x,+1〉, x ∈ X+ (1)

to update the classifier is a correct positive update. The
set can by quite small; in the extremal case it contains
only one positive sample. The only assumption is that
X+ is a representative set. Roughly speaking, each pos-
sible appearance should be captured by this subset.

Negative updates: The probability that an object is present
on patch xi is given by

P (xi = object) =
#pi
∆t

, (2)
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where #pi is the number of objects entirely present in a
particular patch within the time interval ∆t. Thus, the
negative update with the current patch

〈xi,t,−1〉 (3)

is correct most of the time (wrong with probability
P (xi = object)). The probability of a wrong update for
this particular image patch is indeed very low.

2.3 On-line Learning
Since the positive updates are always correct per definition
the remaining problem is that occasionally false negative up-
dates might be carried out. Hence, the applied on-line learn-
ing method (a) must cope with some (low) label noise and
(b) must have fading memory (forgetting). In general, any
learning method that fulfills these requirements can be ap-
plied, but in this work we use on-line boosting for feature
selection [6].

In general, Boosting1 forms a strong classifier

H(x) =
N∑
n=1

αnhn(x) (4)

by a linear combination of N weak classifiers hn(x),
which have only to perform better than random guessing.
These weak classifiers are trained by re-weighing the train-
ing samples, i.e., more emphasis is given to still misclas-
sified examples. In order to do feature selection, where
each weak classifier hj corresponds to a feature fj , for on-
line boosting [14] selectors were introduced. Each selec-
tor is represented by its best weak hypothesis according to
the estimated training error ê = λwrong

λwrong+λcorr
, where λcorr

and λwrong are the importance weights of the samples seen
so far that were classified correctly and incorrectly, respec-
tively. The actual boosting step can then be performed on
these selectors. In this way, the classifier selects a good sub-
set of simple image features from a large pool.

The weak classifier hj (which corresponds to one fea-
ture j) is built based on two distributions, i.e., the estimated
response of the feature D+

j and D−j for negative and pos-
itive images, respectively. Based on these a simple deci-
sion stump is calculated. In order to select a feature, the re-
weighted error is continuously updated and the feature with
the lowest estimated error is selected by each selector. Thus,
finally, at each time a strong classifier (subset of features) is
available.

3 Adaptive Grid-based Detector
Using the ideas discussed in Section 2 similar to [7] we can
define a grid-based object detection system. In particular,
we apply on-line boosting for feature selection to train the
classifier by using a fixed update strategy. The main concept
- consisting of an evaluation and an update stage - is depicted
in Figure 4.

First of all, the classifiers are initialized randomly. Then,
at each time step in the evaluation stage a particular patch

1In this paper, we focus on the discrete AdaBoost algorithm for binary
classification problems [5].
Extract patches Classify patch

Positive updateNegative update

Evaluation 
stage

Update 
stage

Figure 4: Overview of the grid-based approach. The grid ele-
ments are highly overlapping and have a fixed size, depending on
the scene calibration. Each grid element is an independent classi-
fier, which discriminates between objects and the background. In
order to be adaptive to changes in the scene, each classifier is up-
dated by a fixed update strategy.

(grid-element) is analyzed and classified by the correspond-
ing classifier. Independent of the obtained classification re-
sult the classifier is then updated using the fixed rule dis-
cussed in Section 2.2. In particular, a positive update is per-
formed using a representative sample (e.g., the mean image
of the training samples) and a negative update is performed
using the current patch.

Considering this learning strategy three main problems
arise: (a) if the variability of the object’s appearance is too
large a single sample would not sufficiently represent the
appearance (even not if the complexity of the classification
task is dramatically reduced). (b) Since the classifiers are
updated for each arising image, (non-moving) objects may
be included into the negative representation. (c) Due to the
random initialization of the features a sub-optimal initial
feature set would be selected that might not be sufficient to
solve the required task. To overcome these problems, in the
following we propose three strategies to improve the grid-
based classification.

3.1 Efficient Fixed Update Strategy
In order to increase the robustness of the grid-based object
detector, we slightly modified the fixed update strategy. In-
stead of iteratively updating the classifier using a single sam-
ple or a small set of labeled samples, which have to be kept
in memory, we pre-train the positive distribution D+

j for
each feature j. Therefore, the system is updated until the
distribution of the positives values converge. Since only the
thus obtained distribution is required later on, even a huge
training set representing a wide range of variability can be
used in this pre-training step.

Afterwards the distribution of the positive feature values
stays fixed and only the negative distribution is adapted over
time (i.e., the patch corresponding to the classifier is used for
the negative update). Since no positive updates are required
as an additional advantage the performance is increased. In
fact, in the update stage only negative updates are necessary.
This is illustrated in Figure 5 for one specific weak classifier.

3.2 Feature Pre-selection
For training our classifiers we apply on-line AdaBoost for
feature selection [6], which initializes each weak classifier
with randomly selected features. As a result the final strong
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Figure 5: The two distributions describe the feature values for the
positive and negative examples of one weak classifier. The green
Gaussian distribution describes the distribution of the feature val-
ues of all positive examples, which is pre-trained and fixed. The red
Gaussian distribution models the distribution of the feature values
for all negative examples. The standard deviation and the displace-
ment of the mean value depend on the images in the scene.

classifier is highly dependent on this random initialization!
The random initialization of the classifier has an even larger
impact, if the number of selectors and the number of weak
classifiers are small. The number of selectors that is nec-
essary to solve the classification problem depends on the
complexity of the problem. Considering for instance a quite
simple classification problem, where 10 selectors, each con-
taining 20 weak classifiers are sufficient to solve the task.
In this case each selector chooses one weak classifier out
of 20 randomly initialized weak classifiers. If the 20 fea-
tures out of these 20 randomly selected weak classifiers are
not very accurate to solve the classification problem, this se-
lector would give poor results. But this can be avoided by
initializing the feature pool in a more sophisticated way than
random selection.

In order to overcome this problem we train an off-line
classifier by using off-line AdaBoost for feature selection at
a pre-training stage. The thus selected and pre-trained fea-
tures are used in the on-line training later on. We adapted
the off-line AdaBoost for feature selection algorithm [16].
Instead of selecting the best feature out of a large feature
pool we selected the best n features, where n is the num-
ber of weak classifiers in one selector of the on-line algo-
rithm. In each iteration of the off-line version one selector
is initialized. The exactly calculated error of the off-line al-
gorithm can be used to initialize the two variables λwrong
and λcorrect, which are used for estimating the error of the
on-line algorithm. The off-line pre-trained classifier ensures
that instead of choosing random features the strong classifier
consists of features that are more appropriate for this task.
The off-line trained classifier can either be trained for a spe-
cific scene or for a generic task. An illustrative example of
thus initialized features sets are given in Figure 6. It clearly
can be seen that the features shown in Figure 6(a) describe a
person considerably better than those shown in Figure 6(b).

3.3 Including Prior Knowledge
Since we are very often dealing with problems where prior
knowledge is available it might be advantageous to use this
(a) Off-line pre-selected features.

(b) Randomly selected features.

Figure 6: Sophisticated (a) vs. random (b) feature initialization.

information in order to further improve the performance of
an object detection system. In particular, for an adaptive
system, which should be as adaptive as possible, this prior
information can limit the problem of over-adaptivity.

We take advantage of prior knowledge in form of an off-
line trained classifier that is directly included into the re-
sponse of the strong classifier:

H(x) = sign(p · confHoff(x) + (1− p) · confHon(x)), (5)

where Hoff is the prior knowledge and Hon is the on-line
classifier. The required confidence of a classifier is calcu-
lated as

conf(x) =
∑T
t=1 αtht(x)∑t

t=1 αt
, (6)

where αt is the voting weight of the classifier ht of the en-
semble.

We use an off-line classifier trained by the off-line Ada-
Boost for feature selection algorithm to describe the prior
knowledge. Depending on the training data used for this off-
line classifier either a common off-line object detector (e.g.,
a pedestrian detector) or an off-line classifier for a specific
scene can be trained. Training the off-line classifier on the
specific scene might further improve the results. This single
off-line classifier is used as a decision support for all classi-
fiers in the classifier grid.

Depending on the performance of the off-line classifier
the influence p of the off-line classifier on the whole classi-
fication result can be varied. Instead of just using the class
label of the on-line and the off-line classifier we used the
confidence values of both classifiers and combined them.

4 Experimental Results
In the following, we demonstrate the benefits of the pre-
sented approach by three different experiments. First, we
give a detailed evaluation on a publicly available pedes-
trian detection benchmark dataset in Section 4.1. Second,
to demonstrate that the method is not limited to pedestrian
detection it is applied for car detection in Section 4.2. Third,
since the goal was to develop a system that is stable over
time, in Section 4.3 we show the stability of the proposed
approach in a long-term experiment, where we performed
approximately 150,000 updates.
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For a quantitative evaluation, we use recall-precision
curves (RPC) [1]. Therefore, the number of true positives
TP and the number of false positives FP are computed
based on the given ground-truth. A detection is accepted
as true positive if it fulfills the overlap as well as the rela-
tive distance criterion where for both criteria the parameters
(minimal overlap, maximal relative distance) are set to 50%.
The precision rate PR describing the accuracy of the detec-
tions is calculated by

PR =
TP

TP + FP
(7)

whereas the recall-rate RR describing the number of posi-
tive samples that were correctly classified is given by

RR =
TP

P
, (8)

where P is the total number of objects in the ground-truth.
Finally, to evaluate the detection results we plot the recall-
rate RR against 1− PR.

4.1 Pedestrian Detection
First of all, we give a detailed evaluation of the proposed
method on a challenging publicly available pedestrian de-
tection benchmark dataset, i.e., “Central Pedestrian Cross-
ing” sequence from Leibe et. al. [10]. The dataset consists
of three different outdoor scenes, but in particular, the re-
sults shown here were obtained from the first of these three
sequences. The sequence contains 101 frames of a resolu-
tion of 640 × 480. This specific scene was chosen, since it
contains both, frontal views and side views of pedestrians.
Thus, it represents a quite realistic scenario.

In addition, a ground-truth is available (i.e., every fourth
frame is annotated). Thus, the updates for the proposed ap-
proach were performed in each frame but the evaluations
were estimated only from the annotated frames. In particu-
lar, for the grid-based detector the parameters summarized
in Table 1 were used:

Parameter Value
Patch size 32× 64
Overlap of grid elements 83%
Number of classifiers 1.262
Number of selectors per classifier 10
Number of weak classifiers per selector 20

Table 1: Parameters for the pedestrian detection experiment.

The small and compact classifiers used enable real-time
detection even for this large number of 1.262 classifiers.

In addition, the proposed approach was compared to the
following methods including low level cues such as back-
ground subtraction and state-of-the-art generic person de-
tectors:

Background Model (BGM): The simplest method for ob-
ject detection is a foreground/background segmentation
using a(n) (adaptive) background model. In particu-
lar, we apply the approximated median background
model [13]. The pixel intensity of the background
model B(x, y) is increased by a constant value c if
B(x, y) < In(x, y), where In(x, y) is the intensity of
the current image, and is decreased otherwise.

Template Matching (TM): In contrast to BGM Template
Matching is an appearance-based approach. By using
a sliding window technique each patch of an image is
tested if it is consistent with a template or not. Typically,
for that purpose the similarity between the intensity val-
ues of the template and the analyzed patch are estimated
by applying the “normalized cross-correlation” as simi-
larity measure.

BGM+TM: The combination of a background model and
template matching can be seen as a very simple pendant
to the grid-based approach. In fact, for a given patch the
appearance and the background is described within a sin-
gle model.

Viola & Jones: The object detector of Viola and Jones [17]
is based on a cascade of classifiers trained by the off-line
AdaBoost for feature selection. For our experiments we
used the full body classifier attached to the OpenCV2 [9].

Dalal & Triggs: The pedestrian detector of Dalal and
Triggs [3] is based on histogram of oriented gradient
descriptors. For our comparison we used the code
available on the Internet3.

Felzenszwalb et al.: The object detector of Felzenszwalb
et al. [4] is trained using a latent SVM (to cope with
articulated parts) for multiple objects (e.g., persons, cars,
buses). In particular, for this experiment the person de-
tector trained for the VOC’06 challenge was used. The
MATLAB code as well as the classifiers can be down-
loaded from the Internet4.

The thus obtained results sorted by the F-measure are
summarized in Table 2. To ensure a fair comparison, in
a post-processing step we discarded all detections with an
inappropriate scale. In fact, a detection was removed if
the scale was smaller than 75% or greater than 150% of
the expected patch-size (defined by the corresponding grid-
element). Please note, this post-processing does not reduce
the recall since these detections would be counted as false
positives otherwise.

From Table 2 it can be seen that the highest recall is ob-
tained by using the background model (BGM) and template
matching (TM), but in both cases the precision is far be-
low a sufficient level in practice. But by combining these
two approaches “competitive” results can be obtained. In
fact, state-of-the-art methods such as Viola & Jones [17] and
Dalal & Triggs [3] are clearly outperformed and the results
are comparable to the approach of Grabner et al. [7]. But the
recall is still insufficient. In contrast, by applying the pro-
posed approach the recall-rate is increased to 63% at a pre-
cision of 96%! Considering the complexity of the task (i.e.,
the scene mainly contains persons from the side view) the

2http://sourceforge.net/projects/opencvlibrary
3http://pascal.inrialpes.fr/soft/olt
4http://people.cs.uchicago.edu/˜pff/latent
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method recall precision F-measure
TM 0.94 0.04 0.08
Dalal & Triggs [3] 0.19 0.15 0.17
Viola & Jones [17] 0.31 0.13 0.18
Felzenszwalb [4] 0.26 0.32 0.29
BGM [13] 0.93 0.24 0.38
BGM + TM 0.55 0.83 0.66
Grabner et al. [7] 0.55 0.88 0.68
proposed (3.1) 0.67 0.75 0.70
proposed (3.1+3.2) 0.63 0.96 0.76

Table 2: Comparison of different approaches for the pedestrian
detection experiment.

obtained results are quite competitive. Finally, in Figure 7
we show some illustrative detection results for the proposed
grid-based detector.

(a) (b)

(c) (d)

Figure 7: Exemplary detection results for the pedestrian detection
experiments obtained by the proposed approach.

4.2 Car Detection
The previous experiment was focused on pedestrian detec-
tion. In order to demonstrate that this approach is not limited
to person detection, we apply it for car detection. In partic-
ular, the experiment was carried out on a highway surveil-
lance sequence with a resolution of 720 × 576, which con-
tains 1000 frames.

Compared to person detection car detection is a more
challenging task, because there is more variability in the ap-
pearance (i.e., we have to detect limousines, minivans, com-
pact cars, etc.). Thus, more complex classifiers are required
to obtain detection results of sufficient accuracy. In partic-
ular, for our experiments we applied classifiers containing
70 selectors, each consisting of 30 weak classifiers. The pa-
rameters for this experiment are summarized in Table 3.

In addition, we used pre-selected features and included
an off-line prior, i.e., an off-line trained classifier with 500
weak classifiers, such as described in Section 3.2 and Sec-
tion 3.3. In order to be less liable to label noise and to in-
Parameter Value
Patch size 50 x 50
Overlap of grid elements 92%
Number of classifiers 1.163
Number of selectors per classifier 70
Number of weak classifiers per classifier 30

Table 3: Parameters for the car detection experiment.

crease the performance of our object detection system, we
modified the update strategy. Instead of updating the patches
in all arriving images, the classifiers were updated only ev-
ery fifth frame. The other frames were used for evaluation,
but no updates were performed.

For evaluation purposes, we evaluated three classifiers in
parallel: (a) fixed off-line pre-trained classifier, (b) adaptive
on-line grid-based classifier, and (c) a classifier combining
off-line and on-line information using Eq. (5). The corre-
sponding precision-recall curves are shown in Figure 8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

 

 

Grid−based approach + off−line prior knowledge
Grid−based approach
Off−line Detector

Figure 8: Recall-Precision curves for the car detection experiment:
off-line detector, grid-based detector, and combined detector.

It can be seen that the off-line detector has an excellent
precision but the recall is too low in practice. In contrast,
the pure on-line classifier has a high recall and a preci-
sion, which might be sufficient for the task. But if both ap-
proaches are combined we obtain a high recall-rate at a high
precision. Thus, it is clear that the combination introduced
in Section 3.3 can be beneficial for practical applications.
In this way, starting from a fixed prior the on-line classifier
assures the required adaptivity.

Exemplary detection results are shown in Figure 9. The
yellow bounding boxes indicate the detections whereas the
big white box is the region where the detector is applied.
In this case, the actual task was to detect a car once within
the detection area and to further track those cars that were
detected (e.g., for speed measurement).

4.3 Long-term Experiment
Finally, we demonstrate the proposed approach in a long-
term experiment for two purposes. First, we want to show
that the proposed grid-based detector does not drift even if a
large number of updates is performed. Second, we want to
emphasize the need for an adaptive object detection system.
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(a) (b)

(c) (d)

Figure 9: Exemplary detection results for the car detection exper-
iment. The white rectangle indicates the detection region.

Thus, in this experiment we observed a corridor in a public
building for 24 hours and processed in total 150,000 frames
with a size of 240× 320. In fact, each classifier correspond-
ing to a grid-element was updated as a new frame arose.

Similar to the experiments carried out in Section 4.1 each
classifier holds 10 selectors consisting of 20 weak classi-
fiers. A complete list of all required parameters for this setup
is given in Table 4. In addition, to increase the performance,
we used a sub-set of features and included an off-line prior
such as described in Sections 3.2 and 3.3.

Parameter Value
Patch size 32× 64
Overlap of grid elements 90%
Number of classifiers 1.255
Number of selectors per classifier 10
Number of weak classifiers per classifier 20

Table 4: Parameter settings for the long-term experiment.

During the 24 hours we evaluated the performance at
four different points in time (afternoon, evening, morning,
and afternoon). In particular, after 100, 31,500, 110,000,
and 149,000 processed frames we evaluated a fixed se-
quence of 500 frames (to show the stability the last sequence
contains 1000 frames) and computed the precision-recall
curves, which are shown in Figure 10.

One can clearly see that the performance of the sys-
tem is not decreased, even after 150.000 unsupervised up-
dates. The slightly different performance curves can be
explained by slightly the different complexity of the se-
lected sequences (i.e., lightening condition, number of per-
sons within the sequence, etc.). In fact, the worst results are
obtained for frames 100 - 599 right after the experiment was
started!

Finally, we show some illustrative detection results in
Figure 11, that were obtained during 24 hours. It clearly can
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Figure 10: Recall-Precision curve for four different sequences dur-
ing the 24 hours experiment.

be seen that the environmental conditions (i.e., mainly illu-
mination) are drastically changing over time, which arises
the need for an adaptive system. However, as can be seen
the proposed approach can handle this challenging task.

5 Conclusion
In this paper, we presented a robust adaptive method for
object detection from static cameras. In particular, we ex-
tended the idea of classifier grids in a way that it can be
applied for real-world scenarios. The main idea is to on-line
train a specific classifier by on-line boosting for each image
location, which allows to adapt to changing environmental
conditions. To avoid drifting, i.e., ensure that the classifier
does not get corrupted during on-line updating, the positive
representation is kept fixed whereas only the negative repre-
sentation is updated. In addition, to improve the classifica-
tion results we pre-select a small subset of highly valuable
features and optionally include an off-line trained classifier
in our decision function. The experimental results show that
the proposed approach does not only outperforms simple de-
tection methods such as background subtraction or template
matching but also state-of-the-art object detectors. In addi-
tion, in a long-term experiment we showed that the proposed
update strategy is stable over time and that the system can
be applied in a real-world 24/7 scenario.
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