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Abstract. A fundamental problem of object tracking is to adapt to un-
seen views of the object while not getting distracted by other objects.
We introduce Dynamic Objectness in a discriminative tracking frame-
work to sporadically re-discover the tracked object based on motion. In
doing so, drifting is effectively limited since tracking becomes more aware
of objects as independently moving entities in the scene. The approach
not only follows the object, but also the background to not easily adapt
to other distracting objects. Finally, an appearance model of the ob-
ject is incrementally built for an eventual re-detection after a partial or
full occlusion. We evaluated it on several well-known tracking sequences
and demonstrate results with superior accuracy, especially in difficult se-
quences with changing aspect ratios, varying scale, partial occlusion and
non-rigid objects.

1 Introduction

Over decades of research, a vast number of tracking algorithms have been de-
veloped for increased performance in particular applications. Many assumptions
about the object, the scene and the camera movement have been introduced in
order to constrain tracking. In this paper, however, we cope with the most general
problem of tracking an object with minimal prior knowledge, i.e., “model-free”
tracking. This task is particularly challenging as it is hard to introduce effective
constraints.

We first analyze related literature to extract four tracking paradigms that
are often used to constrain tracking in restricted situations, as depicted in Fig. 1.
In fact, we categorize tracking approaches according to their assumptions on the
object’s appearance, the scene, the object’s saliency and the use of a fixed object
model.

We then propose a novel tracking approach that originates from this careful
analysis of literature to explore all four identified paradigms. Our main con-
tribution is the definition and the use of Dynamic Objectness to sporadically
re-discover the tracked object if it moves distinctly from its surroundings. Dy-
namic Objectness is based on motion saliency and embedded in a discriminative
tracking framework. With Dynamic Objectness, our algorithm becomes more
aware of objects as separately moving entities in larger scenes and therefore
effectively limits drifting, as demonstrated in our experiments.

luc.vangool@esat.kuleuven.be
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Fig. 1. Four tracking paradigms are combined in our approach. Each indicates
where the object moved according to (i) the object itself, (ii) the scene, (iii) the
object’s saliency and (iv) a previously learned object model. Their combination
allows robust tracking in a wide variety of scenarios.

2 Related Work

There is extensive work on tracking, see [1] for a survey, so a detailed review
goes far beyond the scope of the paper. However, we give a brief overview to cat-
egorize representative tracking approaches according to their dominant tracking
paradigms.

Approaches based on a single paradigm. Many classical tracking ap-
proaches rely mainly on one specific paradigm motivated by a particular appli-
cation.
Object: Tracking approaches of this category adaptively model the appearance
of an object. Such methods have the potential to follow the object through
various appearance changes, but at the risk of adapting to other distracting
objects or background. Optical flow [2] and tracking of local image features [3]
are early representatives. Other approaches keep track of appearance properties
of the object region, e.g ., a color histogram [4], a subspace model [5], parts [6] or
stable structures [7]. More recent approaches combine multiple object features
such as color and structure [8,9,10,11] in order to limit drifting.
Scene: Approaches relying on the scene consider objects as outliers to the scene
model. These approaches are well suited to situations in which the appearance
or geometry of the scene is relatively stable, but the object of interest is hard
to describe. Their assumptions are particularly successful in static camera set-
tings [12,13,14].
Model: Model based approaches rely either on an off-line training phase or fully
on the first frame in order to learn a fixed appearance model. During tracking,
the model is only applied to the image. Some methods search the fixed object
model exhaustively and independently in every frame to not suffer from drifting
that might jeopardize all future results. But these methods might fail temporally
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because of missed detections (due to an incomplete object model) or false detec-
tions in the background on similar objects (due to a too general object model).
Other methods with fixed models, however, iteratively perform a local search
because of efficiency reasons or ambiguous models. Such approaches might end
up in a permanent drifted state even with a fixed model at hand.

Typical representatives are tracking-by-detection methods such as [15,16], or
classical template tracking [17,18].

Saliency: There are two main cues for saliency: motion and appearance. Motion
segmentation approaches such as [19] typically exploit the first, whereas the
latter is used for object boundary tracking [20,21].

Approaches based on multiple paradigms. Due to the obvious limi-
tations in more general situations, recent approaches often implicitly combine
multiple paradigms.

Object & Scene: Tracking formulated as a binary classification task such as [22,23,24]
incorporates regular classifier training in order to distinguish the object from its
surrounding background using various feature types. Recent discriminative ap-
proaches are also aware of similar objects in the scene as well as the location of
the object with respect to background [25]

Object & Appearance Saliency: Such methods are usually named tracking-by-
segmentation. For example, tracking formulated as repeated figure/ground seg-
mentation [26] incorporates object saliency in single frames, as well as appearance-
based foreground models to track salient objects through time.

Object & Model: Adaptive methods are often combined with general models
to overcome their limitations. Adaptive methods are particularly susceptible to
model drifting since future tracking results rely on previous ones. Conversely,
pre-learned general models are drift-free, but at the cost of not being adaptive
to varying appearance. Their straightforward combination consists of propagat-
ing intermittent detections across frames, for example with optical flow [27].
But there is a whole range of methods that keep some information fixed while
adapting a model during tracking [28,29] or methods that introduce additional
visual constraints [30]. Furthermore, meta-level tracker combinations are used
to improve stability. The output of individual trackers can be fused as “black-
boxes” [31], probabilistically within a particle filter framework [32] or for specific
situations [33].

A note on features and dynamics. Please note that each of the tracking
paradigms incorporates a different collection of features. For instance, the object
paradigm typically relies on features describing the object which are only mean-
ingful locally for the short-term, e.g ., KLT-points, whereas the features of the
model paradigm are typically significant in the whole image for a longer period
of time, e.g ., SIFT features. Dynamics can be exploited in combination with all
the tracking paradigms if the object motion is predictable in the target applica-
tion. For instance, particle filter based approaches are especially well suited to
combine the appearance of the objects and its motion [21].
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3 Dynamic Objectness for Adaptive Tracking

In this section we introduce our tracking approach based on the four spotted
tracking paradigms. The object, scene and model paradigms are employed to
precisely follow and to re-detect the object, whereas the saliency paradigm serves
for adaptation.

Let us assume the target object is initialized in the first frame. Besides a man-
ual initialization, an automatic initialization is possible based on: (i) the model
paradigm with an already available object model or (ii) the saliency paradigm
that allows to discover salient objects. After initialization, the image is divided
into an object and a scene region and the tracking starts as summarized in the
following.

Propagation. Given object and scene regions, both are propagated through
time (object and scene paradigms).

Detection. The object region is retained in order to re-detect the object
after a partial or full occlusion (model paradigm).

Exploring and Grouping with Dynamic Objectness. As the object
moves in 3D space, it might change its perceived appearance in the image or
becomes occluded by another object. Propagation and detection are not sufficient
as it becomes necessary to delineate the new appearance from background and
other distracting objects, i.e., to adapt to the changed appearance of object in an
unsupervised manner. For that purpose, we introduce the Dynamic Objectness
based on the saliency paradigm.

Fig. 2. We are not only following the object (green), but the whole scene (red)
in order to not confuse the object with known background. Additional saliency
measures (blue) help to further stabilize tracking. During the tracking process,
a model (orange) of the target object is carefully built to assist tracking and for
eventual re-initialization.
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Algorithm 1: Tracking with Dynamic Objectness
1 init. set of target object points O, scene points S, and unknown points U
2 while run do

3 Propagation: object and scene paradigm
4 - track all local image features in the image, i.e.
5 from O, S, and U
6 Detection: model paradigm
7 - detect local image features and add them to U
8 - find matches of U with target model Mtarget

9 and add to O
10 Exploring and Grouping: saliency paradigm
11 - get possible object regions using Dynamic
12 Objectness (Eq. 1)
13 - score these regions using O and S (Eq. 2)
14 - update point sets O, S and U (Eq. 3)
15 - update object model Mtarget

16 Tracking Result: region covered by O
17 end

The tracking process is depicted in Fig. 2 and summarized in Alg. 1. Whereas
the paradigms can be implemented using different types of features, we show
an implementation based on local image features. In fact, we maintain sets of
tracked objects points O, tracked scene points S and unknown points U and
incrementally learn a model of the target object Mtarget during tracking. The
following subsections describe the employed paradigms and their implementa-
tions in more detail.

3.1 Propagation

Object paradigms: A straightforward approach to track an object is to simply
look for a similar object, or part of it, in the next frame. If the appearance be-
tween two sequential frames is similar, then this approach is expected to produce
accurate results.
Scene paradigm: In many scenarios, the background is more stable and is eas-
ier to track than the object itself. In such cases, the scene paradigm greatly
constrains the possible locations of the object.

Implementation. For tracking object features as well as background fea-
tures we simply use sparse optical flow. KLT-points [3,18] are tracked in the
whole scene. Newly appearing points are put in the set of unknown points U . All
points are tracked and kept in their respective sets, i.e., propagated. Such an
approach deals well with perturbations like deformations at the object level or
scale changes. Its accuracy, however, depends on texture and size of the object.



6 S. Stalder, H. Grabner, and L. Van Gool

3.2 Detection

Model paradigm: After successfully tracking an object for an extended period of
time, the tracker is expected to become more stable. An object model Mtarget

is learned for this purpose. The model continuously specializes to the object
being tracked. It can then be used to re-detect the object after a partial or full
occlusion. Ideally, such a model finally incorporates all appearances of the object
and can robustly be applied to the image.

Implementation. All object points pi 2 O are characterized by descrip-
tor di extracted from a local image patch around the point. The object model
Mtarget = {di} consists of these descriptors. The set of all unknown points U
are similarly described to allow for re-detection as object points. In fact, the
descriptors from the unknown points are compared to the descriptors of the
object model using normalized cross-correlation. If the nearest neighbor from
an unknown point descriptor to the object point descriptors is significantly1

closer than the second nearest neighbor, then the unknown point is considered
as matched and added to the set of object points.

3.3 Exploring and Grouping with Dynamic Objectness

Saliency paradigm: The sheer amount of possible appearance changes of an
object, e.g ., due to lighting or pose variations, can render the object itself hard to
follow. Many state-of-the-art tracking algorithms solely model the specific region
being tracked and lack a general concept of objects. Conversely, all objects have
a number of common properties. In object detection, objects are characterized
as standalone “things” with well-defined boundaries and centers, such as cows,
cars, and telephones, as opposed to amorphous background “stuff”, such as sky,
grass and road [34]. In a temporal context, objects are relatively stable in form
and tend to move distinctively from their surroundings.

Dynamic Objectness. Recent work in object detection [35,36] exploits
the closed boundary characteristic of objects in order to find regions which are
likely to fully contain objects. We adopt a similar strategy for discovering unseen
appearances of the tracked object. Instead of using static image features such as
edges, we characterize objects as entities that tend to move independently from
their surroundings and rely on motion saliency. In fact, we first apply motion
segmentation on all tracked feature points to get clusters C of similarly moving
points, see Fig. 3(a) and (b).

The object is typically split into several small clusters, whereas the image
points in the scene fall in much bigger clusters. In many scenarios the object is
moving in foreground with rather diverse 2D motion vectors. In contrast, the
scene is at distance and its motion vectors are more homogeneous, even with a
1 Let us consider m1 and m2 as the best and second best match respectively, then a

match is considered if m2/m1 > ✓match. We used ✓match = 0.6 for all our experi-
ments.
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(a) Tracking (b) Motion seg-
mentation

(c) Dynamic Ob-
jectness

(d) Updating
tracked object

Fig. 3. The tracked feature points shown in (a) are grouped in (b) according
to their motion. Our novel Dynamic Objectness allows to locate possible object
regions (c). Using the propagated points, the tracked object region can robustly
be updated (d).

moving camera. Our Dynamic Objectness is designed to group these foreground
clusters together based on their spatial proximity and the compactness of the
grouping. It is defined analogue to the “superpixel straddling” score of Alexe et
al . [35]:

DO(R) := 1�
X

C2C

min(nin(R,C), nout(R,C))

n(R)

, (1)

where n(R) := card({p|p 2 R}) is the overall number of points in the region
R, nin(R,C) := card({p|p 2 R,p 2 C}) the number of points belonging to
cluster C in R and nout(R,C) := card({p|p /2 R,p 2 C}) the number of points
belonging to cluster C outside R. Similar to [35], clusters entirely inside or
outside R contribute 0 to the sum. For a straddling cluster C, the contribution
is lower when it is contained either mostly inside R, as part of the object, or
mostly outside R, as part of the background, see Fig. 3(c). In doing so the
Dynamic Objectness allows to naturally incorporate knowledge about the size
of the object and its location during tracking.

Implementation. For all tracked feature points pi we build a motion vector
mi = [dx, dy]i where dx and dy are the x and y displacements of the tracked
point between two successive frames. Based on these motion vectors we apply
[37]2 clustering in order to obtain the motion clusters C. For possible regions
R we only consider rectangular regions of the approximate object size to find
interesting regions.

3.4 Updating Point Sets and Object Model

In case of occlusion or abrupt motion, point tracks tend to be short and need
to be updated. This update process is the most critical part of every model-free
tracking algorithm since small errors can easily accumulate and lead to drifting.

2 http://people.cs.uchicago.edu/~pff/segment/, 2010/04/21 with parameters:
threshold = 0.5, min_size = 1, and k = 30-nearest neighborhood.
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In our tracking approach, we use Dynamic Objectness that find regions
likely to fully contain objects to regularly update the region to be tracked.
More precisely, we are interested in re-discovering the target object for up-
dating the object and the scene sets. Therefore we want to select the region
proposed by the Dynamic Objectness which most likely corresponds to our
target object, see Fig. 3(d). So we define a target score T (R) with respect
to the whole scene, i.e., using the set of known object and scene points. Let
nobj(R) := card({p|p 2 R,p 2 O}) be the number of points belonging to the
object set and nsce(R) := card({p|p 2 R,p 2 S}) be the number of points
belonging to the scene set in region R. The target score

T (R) =

nobj(R)� nsce(R)

n(R)

. (2)

is highest if all points in R are in the object set and none is in the scene or
unknown set. For updating we select the most likely region, see Fig. 3(d) as

Rupdate =

(
argmax

R:DO(R)>✓
obj

T (R) if T (R) > ✓target

{} otherwise
(3)

So the update region must be discovered as an object (DO(R) > ✓obj) and
furthermore as the object which we are interested to track (T (R) > ✓target).
Every point in Rupdate is added to the object set O and every other point is
added to the scene set S. Furthermore all the object points are described via a
local descriptor and added to the discriminative target model Mtarget. Inspired
by [30] we remove every point from the object model that matches to any point
not in Rupdate. This ensures that no point is simultaneously in the object model
and the scene set.

Implementation. All regions R with a dynamical objectness measure
DO(R) above ✓obj = 0.85 are possible object regions and if additionally its
target score T (R) is above ✓target = 0.85 the region is considered to be part
of the target object. These parameters are subject to the well-known stability-
plasticity dilemma [38]. The experimental results with fixed parameters provide
empirical evidence that their choice is not critical and allows to track objects
robustly in many circumstances.

4 Experiments

In this section we first show qualitative results for the Dynamic Objectness that
implements the saliency paradigm, the backbone of our tracking approach. Then,
detailed experiments with quantitative and qualitative results are conducted on
competitive tracking sequences. During the experiments, we kept all the param-
eters fixed as described in the previous sections.

Resources. For KLT point tracking we use the function cvCalcOpticalFlow-
PyrLK() of OpenCV Library 2.0 3. In order to increase its robustness we imple-
3 http://opencv.willowgarage.com/, 2011/11/01.

http://opencv.willowgarage.com/
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Fig. 4. The Dynamic Objectness groups motion clusters (1st and 3rd column;
clusters are color coded) into meaningful object regions (2nd and 4th column).

ment a forward-backward verification scheme [30]. For interest point matching
we use the OpenSurf C++ code of Chris Evans4. The overall tracking algorithm
typically runs with about 5 frames/s, mainly limited by tracking and matching
feature points. Dynamic Objectness, the core of our algorithm, typically runs in
the order of ms.

4.1 Dynamic Objectness

Fig. 4 depicts results for the proposed Dynamic Objectness. It discovers possible
moving objects (2nd and 4

th column), given a motion segmentation (1st and 3

rd

column) and the rough size of the object of interest. The convex hull of all points
in the object set define the object region. Please note, that they usually consist
of more than one motion cluster.

4 http://www.chrisevansdev.com/opensurf/, 2011/11/03

http://www.chrisevansdev.com/opensurf/
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Fig. 5. Our approach is able to precisely distinguish the object from distractors
while also being capable of adapting to appearance changes of the target object.
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4.2 Quantitative Tracking Results

We compare our method against Multiple Instance Learning (MIL) [39], Su-
perpixel Tracker (SPT) [41]5, Hough Tracker (HTT) [6]6, Tracking-Learning-
Detection (TLD) [30]7 and an Ideal Fixed Scale and Aspect Ratio Tracker (IF-
SART). All trackers are initialized with the same bounding box. As a comparison
measure, we adopted the average of the standard PASCAL overlap, i.e.,

1

T

TX

t=1

Agt(t) \Atr(t)

Agt(t) [Atr(t)
, (4)

where Agt(t) is the ground truth area and Atr(t) the predicted area by the tracker
at time t. Results are shown in Table 1 and discussed below.

Sequence MIL [39] IFSART SPT [41] HTT [6] TLD [30] ours

David 0.54 (0.64) 0.12 0.61 0.59 0.74

FaceOcc 0.45 (0.55) 0.13 0.56 0.49 0.58

FaceOcc2 0.49 (0.49) 0.37 0.39 0.34 0.57

Dollar 0.69 (1.00) 0.37 0.66 0.79 0.63
Tiger 0.33 (0.47) 0.26 0.11 0.29 0.28
Sylvester 0.62 (0.72) 0.65 0.69 0.71 0.69
Board 0.32 (0.65) 0.21 0.19 0.16 0.64

Fist - - - 0.34 0.39 0.56

Table 1. 8 sequences were analyzed quantitatively using the average PASCAL
overlap with the ground truth. The best results are printed in bold faced letters,
the second best results are underlined.

Ground truth. Our ground truth captures the visible part of the target
object by a rectangular bounding box, i.e., it takes scale as well as aspect ratio
changes into account. As many state-of-the-art trackers [40,39,23,8,33] rely on a
fixed scale and fixed aspect ratio, we defined the IFSART as a purely hypothet-
ical tracker. It indicates the maximum possible performance of such methods.
For these trackers the IFSART performance was typically used as ground truth
even though it contained only parts of the target object, large parts of other
distracting objects, or the background. MIL is a representative of a tracker with
fixed aspect ratio and scale, TLD is scale adaptive, and SPT and HTT output
an object segmentation. Please note that all approaches are evaluated against
our ground truth.

Discussion. The strong assumption of IFSART does only hold in very
restricted cases, notably the Dollar sequence with a rectangular target object
that precisely fits a rectangular bounding box with a fixed aspect ratio. In such
5 http://ice.dlut.edu.cn/lu/iccv_spt_webpage/iccv_spt.htm, 2012/02/29
6 http://lrs.icg.tugraz.at/research/houghtrack, 2012/03/05
7 https://github.com/zk00006/OpenTLD, 2012/02/29

http://ice.dlut.edu.cn/lu/iccv_spt_webpage/iccv_spt.htm
http://lrs.icg.tugraz.at/research/houghtrack
https://github.com/zk00006/OpenTLD


12 S. Stalder, H. Grabner, and L. Van Gool

Fig. 6. In contrast to the image segmentation based tracker using hough trans-
form (HTT, 1st and 3rd column) our approach (2nd and 4th column) based on
Dynamic Objectness includes motion information which is often a more domi-
nant cue.

cases IFSART and also the TLD (which also uses a rectangular template for
updating) outperform our method.

TLD uses sparse optical flow to learn an object model much like our method.
There are, however, notable differences. Firstly, our approach tracks the object
and the background to not easily integrate other distracting objects. Secondly,
our approach additionally integrates motion segmentation to sporadically re-
discover the object. These differences led to superior performance in more chal-
lenging sequences where the object does not tightly fit a bounding box like the
FaceOcc sequences or the Board sequence. Also abrupt motion and unreliable
optical flow, as in Fist, are better coped with the help of Dynamic Objectness.

The recent SPT and HTT also incorporate object segmentation similar to
our method. However, we employ motion segmentation on relatively few feature
points, whereas SPT relies on slower image segmentation. Our superior results
suggest that motion segmentation is often a more valuable cue than image seg-
mentation to robustify tracking. As illustrated in Fig. 6 the object often moves
differently from its surrounding background. Therefore our approach is able to
more precisely encompass the object.

4.3 Qualitative Tracking Results

Additional results on the Dudek sequence and the Lipinski sequence are provided
for a qualitative impression of our tracking approach. They include a wide range
of difficulties such as cluttered background, similar objects, moving cameras,
changing illumination, pose and scale changes as well as re-detection of the ob-
ject after disappearance. Many state-of-the-art tracking methods are not aware
of occlusion and cannot adapt the object region. Moreover, they continuously
update the object model and risk of drifting to other objects or the background.
In contrast, our approach updates the object model only very carefully with the
help of the Dynamic Objectness. Robust adaption to unknown aspects of the
object is achieved.

5 Conclusion

We proposed a novel motion segmentation technique, coined Dynamic Object-
ness, for adaptive object tracking. Dynamic Objectness allows to sporadically
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re-discover the tracked object in order to correctly adapt to unseen views. The
object is not segmented in every frame as in other methods, but only in case
of compact motion clusters and for the purpose of adaptation. Additionally, the
approach incrementally builds an appearance model of the object for an even-
tual re-detection after partial or full occlusion. Finally, the approach not only
follows the object, but also the background to not easily drift to other distract-
ing objects. We evaluated our approach on several well-known tracking sequences
and demonstrated results with superior accuracy especially in difficult sequences
with occlusion and rapid appearance changes.

Acknowledgement. This research was supported by the Swiss CTI under project no.
12029, "Embedded vision-based system for accident prevention in industrial environ-
ment".
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