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Abstract

Generic person detection is an ill-posed problem as con-
text is widely ignored. Local context can be used to split the
generic detection task into easier sub-problems, which was
recently explored by classifier grids. The detection prob-
lem gets simplified spatially by training separate classifiers
for each possible location in the image. So far, adaptive
grid based approaches only focused on exploring the spe-
cific background class. In contrast, we propose a method
using different types of context in order to collect scene spe-
cific samples from both, the backgroundandthe object class
over time. These samples are used to update the specific
object detectors. Due to limiting label noise and avoiding
direct feedback loops our system can robustly adapt to the
scene without drifting. Results on the PETS 2009 dataset
show significantly improved person detections, especially,
during static and dynamic occlusions (e.g., lamp poles and
crowded scenes).

1. Introduction

Robust visual object detection and tracking under real-
world conditions is still an unsolved problem and limits the
use of state-of-the-art methods in commercial systems,e.g.,
for video surveillance applications [4]. The task is inher-
ently difficult due to the variability in appearance of persons
(e.g., clothing, pose, illumination), in backgrounds (e.g.,
clutter, static occlusions, moving objects) and in dynamical
occlusions (e.g., crowds [14], other moving objects).

A generic person detector (e.g., [3, 6]) is usually de-
signed to be applicable in any scenario. Hence, a large train-
ing set is required to capture all variability of persons and
backgrounds. Not surprisingly, the main limitation of these
detectors lies in gathering a representative training set.

Context could help to limit appearance changes and thus
scaling down the training set. It is well known that context
plays a very important role,e.g., exactly the same image
patch can be interpreted very differently depending on its
embedding in the world [18]. A generic object detector tries

Figure 1. Having access to a large data-stream and using various
types of context (e.g., scene knowledge, tracking) our approach
continuously updates an specific object detector.

to solve just the ill-posed problem of detecting the object of
a class in any context [12]. Hence, generic detectors often
fail in real world scenarios. In many application scenarios
the detection problem would be far simpler. For example,
in a 24/7 surveillance scenario the camera is often static and
focuses always on one and the same scene. Further, there is
a continuous data stream providing a huge amount of (un-
labeled) data which should be explored for (i) improving
detection results as well as (ii) speeding up the detection
process.

One simple way to benefit from the static camera is to
incorporate information about the particular scene (e.g., us-
ing a ground plane to limit the size of persons). However,
such information usually helps only to reduce the number
of false alarms (e.g., [13]). In order to increase also the de-
tection rate, on-line methods adapting to a particular scene
have been investigated (e.g., [19]). These methods focus on
solving the object detection task in the particular scene and
take advantage from the continuous incoming data stream.
In fact, these approaches use context (scene knowledge) al-
ready in the training process and not just as post-processing.
Therefore, on-line unsupervised learning methods are usu-
ally used to continuously adapt the model. The main prob-
lem, however, is to robustly include the new unlabeled data.



If the data is wrongly interpreted, the performance of the
detector will be reduced. In other words, the detector might
drift and would end in an unreliable state.1

In most object detection systems a sliding window tech-
nique is used,i.e., each patch of an image is tested if it is
consistent with a previously estimated model or not. In con-
trast, Grabner and Roth et al. [10, 16] recently proposed
to simplify the object detection task such that fixed update
rules can be applied. In fact, a separate object detector is
introduced at each image location. This approach can be
applied to long term sequences for different object classes
(i.e., pedestrian and cars) without drifting. The limitations
are due to (i) modeling the object class in a generic fash-
ion (fixed object class distribution) and (ii) temporal drifting
(similar to background modeling).

In this paper, we focus on how to cope with these prob-
lems in a more principled manner. In fact, we propose to not
“blindly” use machine learning techniques, but to explore
various context cues (i.e., 2D, 3D and temporal context [5])
in order to train and improve scene specific object detectors
in a robust manner. The principle is depicted in Fig.1.

The paper is organized as follows. In Sec.2 we review
the basic concepts of on-line learning using classifier grids
and discuss their limitations. Next, in Sec.3 we present
our new approach and three particular implementations us-
ing an increasing amount of context. Detailed evaluations
of the proposed approach as well as results on the PETS
2009 person counting task are given in Sec.4. Finally, we
conclude and summarize the paper in Sec.5.

2. Grid-based Detectors

The idea of classifier grids [10] is to reduce the complex-
ity of the learning problem. In fact, a highly overlapping
grid of classifiers (detectors) is put on the image. This al-
lows to focus on the specific context in which the object de-
tector has to perform. More formally, looking at the Bayes-
formula for a two class classification problem (i.e., x ∈ IRn

is the feature vector andy ∈ {−1,+1} the class label of
positive and negative samples,i.e., object or background)

P (y|x, c) =
P (x|y, c)P (y|c)

P (x|c)
(1)

wherec can be seen as context. The goal is to use con-
text such that its easier to separate the two distributions
P (x|y = 1, c) andP (x|y = −1, c). For simplicity reasons
we will omit the notation ofc in the following. However, the
reader should keep in mind that context allows us to solve
an “easier” sub-problem,i.e. to reduce inconsistencies. The
main contribution of grid-based detectors comes from the
fact that each single grid cell has only to consider its spe-
cific background and distinguish it from the class of objects

1The same problem appears in model-free visual object tracking [15, 9].

at exactly that position. In the following, we briefly review
the recent grid-based approaches for object detection. Fi-
nally we discuss their limits which motivates this work for
object detection in challenging scenes with occlusions.

2.1. Fixed Update Classifier Grid

The principle of the original grid based detection ap-
proach [10] is depicted in Fig.2(a). The approach was
essentially inspired by a classifier grid based background
model [7, 8]. Actually, the unlabeled samples are included
with a fixed update rule interpreting all the incoming sam-
ples as background patches. Additionally, in order to focus
on a particular object class, the positively labeled samples
come from a set of object images (in the extreme case only
one averaged object image was used) which is kept fixed.
The fixed yet simple update rules ensure that the system is
drift free by design (see discussion). On-line boosting for
feature selection [7] is used for learning and updating the
individual classifiers. However, it is not crucial to use this
classifier, any other classifier could be used.

2.2. Generative Models Classifier Grid

Very recently, Roth et al. [16] extended the above re-
viewed approach, see Fig.2(b). In fact, they take a closer
look on the specific training algorithm, namely on-line
boosting for feature selection. A generative model is built
for each feature for both, the positive and the negative class.
The model for the positive class is kept constant, whereas
the model for the negative class is continuously updated us-
ing unlabeled data. These two generative models are then
used to form a discriminative classifier by selecting a good
subset from all possible features. Summarizing, the un-
labeled samples (interpreted as negative data) are used to
guide the feature selection processdirectly. The fixed statis-
tic obtained from positive examples, so the argumentation,
ensures a drift-free system (see discussion).

2.3. Discussion

The underlying problem is to robustly integrate new un-
labeled samples into the system during runtime. Actually,
unlabeled data can only give us information about P(x)
which is the sum over the marginal distributions:

P (x) = P (x|y = 1)P (y = 1) + P (x|y = −1)P (y = −1).
(2)

As can be easily seen from Eq. (1), with no further assump-
tions one can not gain anything form unlabeled data!2 Ob-
viously really interesting and useful examples are the ones

2This is strongly related to semi-supervised and transfer learning,
(see [20] for an excellent survey), where one can think of build scene spe-
cific classifiers by transfering “general” knowledge to a particular task us-
ing unlabeled data. However, as noted above there are strong assumptions
in a pure machine learning setting.



(a) Fixed update rules (b) Generative models

Figure 2. By using a classifier grid instead of a sliding windows approach the detection task gets simplified. This can be seen as using
context to focus on an easier “subproblem” of the detection task. This enables specializing the detector using fixed, yet simple, update
rules directly (a) or by using it inside a specific classifier (b).

for which the actual classifier predicts its label wrongly.
These examples are the crucial ones which improve results
for both, recall and precision of the detector. Without ex-
ternal supervision (assumptions about the data, scene/task
knowledge or context) this can not be solved in a pure ma-
chine learning approach. In the following we take a look
at the assumptions yielded by the grid-based approach and
discuss their limitations.

Label noise. It was already mentioned in the original
paper [10] that the negative updates are not always cor-
rect. Label noise,e.g. false negatives, are included with low
probability. So if a person is standing at the same location
for a certain time, it will get more and more difficult to de-
tect the person. This is even more dramatically when using
boosting for updating the classifier, since the method puts
high weights on misclassified samples. This effect was lim-
ited by the generative models approach, as it is able to cope
with some label noise on feature level. However, this could
not be achieved in the (dominant) feature selection process
itself. Therefore, weight limitation and fading memory was
used (similar to [8]) in order to limit the effect. But, rig-
orously talking, temporary3 drifting still existed. It was
preferable to drift into the background class than into the
object class. More formally, the main assumption is that
the unlabeled data-stream corresponds to the negative class,
i.e.,

P (x) ∼ P (x|y = −1), (3)

since it was assumed that the class priorP (y = −1) �
P (y = 1). In fact, in both mentioned approachesall incom-
ing samples are yielded as background. This is exactly what
limits the approach since the information is even encoded at
the likelihood term and not the prior term in Eq. (1).

Occlusion handling. Another problem of the aforemen-
tioned approaches comes from the fact that no scene spe-

3Note, due to the fixed update strategy the system was able to recover
from failures after time,i.e., the person has left and new updates fades
away the old information.

Figure 3. Proposed approach of context-based grid detector. The
unlabeled data-stream is analyzed and scene specific positive and
negative samples are collected for updating the classifier,i.e. a lo-
cal grid detector.

cific positive samples are incorporated. The object class
is always modeled in a generic fashion,e.g. by using a
fixed/limited set or statistics obtained from it for the object
class. Hence, no attention is paid to occlusions or appear-
ance changes of the object which can not be handled by
the generic detector. So the classifier can focus only on the
scene specific negative class at the grid element, but not on
the scene specific object appearance at that location.

3. Extended Context-based Grid Detectors

We make use of a static camera and the huge amount of
unlabeled data to specialize the detector to the specific scene
similar to the reviewed grid-based detection approaches.
However, in our approach we would like to overcome the
limitations discussed in the previous section.

The principle is depicted in Fig.3, where the main aim of
our approach is to split the unlabeled data streamP (x) into
the margin distributions, see Eq. (2). Further, we propose
to not use every upcoming examples in any case (i.e., either
label it as positive or negative), since we can benefit from



Method Positive updates Negative updates

sliding window
general detector (e.g., [6]) no
adaptive detector (e.g., [19]) some sort of supervision

classifier grid
background model [7] natural image statistics current patch
object detection [10] pre-defined positive set current patch
object detection ext. [16] no (pre-calculated model) current patch

classifier grid our approach verified patches background image

Table 1. Comparison of the training stage of different person detection approaches. Our proposed method (last row) focuses on the context
of the detection problem and explores both, scene specific positive and negative samples.

a lot of data which is accumulated during runtime. In other
words, we do not use it directly in an naive version. In con-
trast, we introduce local pools for positiveX+

i and negative
X−i samples at each grid locationi. The pools are filled us-
ing a defined update strategy, which is described in general
in the following and in more detail in the later subsections.

Positive Samples.Modeling the scene specific positives
improves recall, which however is not obvious to incorpo-
rate robustly. Because the method has to (i) focus on the
right object of interest and further (ii) the object also needs
to be well aligned. Hence, we propose, to fill the pool of
positive samples only by verified samples from the unla-
beled data stream. The verifier has to approved the current
image patch.

Negative Samples. Since the negative class usually
dominates, negative examples are collected by applying a
very conservative (long term) background model.

An update of the classifier is done with a positive sample
and a negative sample from its local (specific) poolsX+

i and
X−i , respectively. In contrast to the former proposed meth-
ods (see Tab.1), we (i) switch from a fixed set of positive
samples to an adaptive (scene/location specific) set; and (ii)
considerably reduce label noise via the background model-
ing for the negative class.

In the following we show three particular methods of the
proposed system, exploring more and more context (or vi-
sual information) for the individual classifier grid elements
and discuss strategies to acquire samples.

3.1. Classifier Grid and Detector

We take advantage of a generic detector and a simple
background image to put the detections into context with
the background at the specific scene and position.

Positive samples.A generic detector is applied to the im-
age at each time instant. The eventual detections are used
to update the grid classifier at the respective location. Note,
the detector is trained on a fixed set, however, the samples
for updating our local grid classifier come from the scene.
Therefore, the grid classifier will not rely on generic mod-

els, but focus on the scene specific object appearances.

Negative samples.The pools of background patches are
filled with a conservative background model and not from
the data directly. Hence, we can reduce label noise consid-
erably, i.e., without any positive examples in the negative
pool. Therefore, drifting into the negative class is limited.

3.2. Classifier Grid and Tracking

The object detector used previously is generic and prob-
ably fails in difficult situations (e.g., occlusions or object
appearances different from learned ones). One way to solve
the occlusion problem is to take advantage of the temporal
context,e.g. using object tracking to collect these informa-
tive positive examples where the generic detector fails.

Positive samples.Tracking results are accumulated for up-
dating the grid detectors. Therefore, the same initial ob-
ject detections are given to a tracker. The tracker tries to
track the objects also under occlusions. This allows us to in-
clude information about the objects under occlusion in that
specific scene instead of relying on generic models. With
generic models it is hard to detect these objects. If the
tracker drifts away from the object, wrong positive exam-
ples are gathered. To prevent such cases, classifiers only get
updated if the tracklet is approved by another detection later
on (Fig.4). If no verification can be done for a user defined
time, the tracker is stopped (yielded as drifted). Hence no
samples are wrongly collected.

Negative samples. Static occluding objects and other
tracked objects are present in both classes, foreground and
background. Therefore, these image regions do not carry
information for discrimination and the classifier will implic-
itly ignore them.

3.3. Classifier Grids and 3D-Context

Finally, we extend the detector grid with the 3D con-
text to benefit especially in situations of occlusion. Fig.5
depicts the principle. From one view point to another, we
assume a common ground plane and map the foot-point of
a detector or a tracker bounding box using a given homog-
raphy [11], see Fig.5. Unfortunately, the bounding box is



(a) (b)

(c) (d)

Figure 4. Temporal context to verify tracklets: a person detector
initializes 2 trackers (a), both trackers perform correctly (b), the
orange tracker remains on the person, the blue one drifts away
(c), but only the orange tracker gets verified by a detection (d).
All intermediate samples will be considered as correct and will be
included in the positive sample bag.

not always precisely aligned with the object. Therefore, the
corresponding patch might not be located at the precise lo-
cation of the person in the second image. We can deal with
such inaccuracy by looking at a larger region in the second
view. Both image patches are concatenated to form the new
training sample. In fact, we are now coping with a 3D clas-
sifier grid in regions with overlap.

Positive samples: Tracking results in one view and their
expected corresponding regions in the other view form to-
gether the patch used for to train the grid detectors.

Negative samples:Negative updates are formed by con-
catenating the corresponding background images from the
two views.

4. Experimental Results

We compare our proposed scene specific detectors to a
state-of-the-art person detector and to a former proposed
classifier grid method. In fact, the evaluation has only been
carried out on this years PETS dataset, however the ap-
proach and results are valid for other object classes and
scenes as well. Our approach is especially designed to per-
form better in difficult scenes with dynamical and static oc-
clusions.

4.1. Implementation Details

We presented a very general framework for specific ob-
ject detection. Principally, any background model, object
detector, tracker or on-line classifier can be used. However,
we used the following setting:

(a)

(b) (c)

Figure 5. 3D Context: A homography (a) maps a point on the
ground plane from one view (b) to another (c).

Scene Geometry. The ground plane was manually esti-
mated. Of course, the issue of ground plane estimation can
also be addressed automatically,e.g. [2].

On-line Classifier.At each grid cell we compute a classifier
using on-line boosting for feature selection [7]. Each clas-
sifier consists of 40 selectors containing a set of 30 weak
classifiers. Haar-like features and histograms of oriented
gradients are used as weak classifiers. The classifier grid
has an overlap of 90 percent between single grid cells. Fur-
ther, a classifier cell is only created if there is existence of a
scene specific positive sample. This allows to save memory
which can be used to increase the overlap or number of fea-
tures. The grid is constantly being filled up with detection
or tracking results (as shown in Fig.6). The classifier grid is
actually quite dense in interesting regions such as the street.
As post-processing, we use a simple non-maxima suppres-
sion taking care of the relations between the cells. Note,
non-maxima suppression is used to group very nearby clas-
sifier grid cells together, however it is only performing on
a very tight local scale similar to the occupancy of a single
person, in order to detect individual people in crowds and
not “fuse” them into one detection.

(a) t1 (b) t2 > t1

Figure 6. Temporal evolution of local classifier occupancy (local
classifier existence is colored in red).



Figure 7. RPC for PETS 2009 dataset.

Method R. Pr. f-M.

3D Grid 0.73 0.79 0.76
Tracker Grid 0.74 0.81 0.78
Detector Grid 0.72 0.71 0.72
Adaptive Grid [10] 0.59 0.55 0.57
Generic Detector Context [6] 0.56 0.93 0.70
Generic Detector [6] 0.63 0.87 0.73

Table 2. Results for PETS 2009 dataset at maximized f-Measure.

Background Model.As background model we use the ap-
proximated median method [17] updated every frame with
pixel increment/decrement by3 if no object is detected.

Object Detector. As an initial person detector we choose
[6]. The resulting detection were filtered using a ground
plane,i.e., the detections must have an overlap of 20 percent
in height with the grids.

Object Tracker. As tracker we used [9] with a one-shot
learned prior which delivers robust tracking results even un-
der partial occlusions.

4.2. Evaluation on PETS 2009 dataset

For a quantitative evaluation, we use recall-precision
curves (RPCs) [1]. We manually labeled all the sequence
frames, results are depicted in Fig.7 and Tab.2. Addition-
ally, we show qualitative result in Fig.8 on three typical
scenes (with one zoomed ) for the different approaches.

The generic detector shows accurate detection results of
fully visible persons. However, in crowed scenes the re-
call is low compared to the proposed classifier grid ap-
proaches. There are no generic detections of partly oc-
cluded persons though,e.g. behind the lamp pole (static
occlusion) or behind persons (dynamic occlusion). Espe-
cially, our approaches outperform the former adaptive grid
approach [10], which indicates that a fixed set of positive

Figure 9. Person counts on PETS 2009 sequenceS1.L1at maxi-
mized f-Measure.

samples can not be sufficient to detect persons in difficult
crowded scenes. As expected, our approach using track-
ing performs better than using detections only. So temporal
context introduced through tracking clearly helps in difficult
scenes to gather occluded samples. There are only slight
differences in the performance of the 2D tracker grid and
the 3D grid. In general, 3D context information seems to
help, however, the PETS dataset might be not long enough
to fully explore it.

To solve the person count task proposed by PETS we
simply count the number of detections per frame at maxi-
mized f-Measure. Fig.9 depicts the counted persons, show-
ing improved performance compared to a generic detector
using context as post-processing. However, please note that
person detection is a more general and harder task than per-
son count. In some cases, false detections compensate for
missing detections. This fact is not reflected in the evalu-
ation of person count. In this paper, no attempt has been
made to improve the person count score.

4.3. Typical Updates

Fig.10shows typical samples collected in the local bags,
reflecting the appearance of persons as well as the typical
background at that position.

The task of the classifier is to select discriminant fea-
tures to distinguish the classes. In contrast to the former gird
based approach we benefit from a scene specific positive set
as well as reduced label noise in the background class. Fur-
ther, it can be noted that the positive class of the tracker grid
contains samples with partially occluded persons. Hence,
focus is implicitly put on relevant image regions as fea-
tures will only be selected in regions which are different
than the background,i.e., no image feature will be placed
on the common occluding object. The 3D grid patches con-
sist of a bigger patch from the first viewpoint and a smaller
extended patch from a second viewpoint. Mostly, there is
more than one person appearing in the extended patch as
the exact correspondences are not available.
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Figure 8. Typical results for PETS 2009 dataset. The approaches perform very differently in the region of the lamp pole (static occlusion)
and in crowds (dynamic occlusions).

5. Conclusion

We explore context to robustly improve object detectors
using unlabeled data. Compared to former approaches, the
focus of the proposed approach was put on conservative
gathering of scene-specific samples for both, specific ob-
jects and backgrounds. The experimental results evaluated
on the PETS 2009 dataset have shown the necessity of in-
cluding context to improve object detection, especially in
the case of static occlusions and crowed scenes.
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