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Abstract

We present a multiple classifier system for model-free

tracking. The tasks of detection (finding the object of inter-

est), recognition (distinguishing similar objects in a scene),

and tracking (retrieving the object to be tracked) are split

into separate classifiers in the spirit of simplifying each

classification task. The supervised and semi-supervised

classifiers are carefully trained on-line in order to increase

adaptivity while limiting accumulation of errors, i.e. drift-

ing. In the experiments, we demonstrate real-time tracking

on several challenging sequences, including multi-object

tracking of faces, humans, and other objects. We outper-

form other on-line tracking methods especially in case of

occlusions and presence of similar objects.

1. Introduction

Robust visual tracking under real-world conditions is

still an unsolved problem and limits the use of state-of-

the-art methods in commercial systems (e.g., video surveil-

lance [5]). Recently, tracking formulated as a binary classi-

fication problem received a lot of attention due to its promis-

ing results. The basic idea of this approach is to learn a

classifier which distinguishes the tracked object from the

local background. Classifiers are trained either (i) off-line,

mainly for speeding up the matching process (e.g., [14]) or

(ii) on-line, in order to cope with variations of the object

that are not known a priori. This paper focuses on the sec-

ond option.

Many methods using different object representations and

learning methods have been proposed for adaptive classi-

fiers (e.g., [2, 4]). Grabner et al. [8] have designed an on-

line boosting framework that adaptively selects features to

discriminate the object from the background. The classifier

is updated using a self-learning policy, i.e., the tracker relies

on its own predictions. Therefore the tracker is able to adapt

to any appearance changes, but unfortunately also suffers

Figure 1. Continuum of approaches from a fixed detector (no up-

dates) to a fully adaptive tracker. Our proposed tracker is balanc-

ing between semi-supervised and the fully adaptive tracking.

from the drifting problem, i.e., amplifying small errors and

adapting to other objects. The underlying assumption is that

the updates are correct and furthermore that those belonging

to the object are also correctly aligned with the object (no la-

bel jitter). The fundamental problem is to robustly integrate

data derived during tracking into the model without drifting.

In general, model-free tracking has basically to cope with a

trade off between adaptivity and stability [12]. Matthews

et al. [16] have coined this problem the ”template update

problem”. Additional knowledge might be used, e.g., geo-

metric verification [11], combination of generative and dis-

criminative models [21], co-learning using different types

of features [23], or constrained updates [13]. Another prin-

cipled approach has been proposed by formulating tracking

as a semi-supervised learning problem [10].

In semi-supervised machine learning, unlabeled data can

be included in addition to labeled data. In fact, an initial

model is assumed to be given (e.g. built during initializa-

tion), while all further tracking examples are then only in-

cluded as unlabeled data. Hence no label noise or label jitter

is integrated as the initial model is being refined. This ap-

proach can also be interpreted as combined detection and

tracking [15] where the detector serves as prior model for

the semi-supervised learning. The initial information does

not get lost and one can recover from drifting while still be-

ing adaptive to appearance changes of the object. Besides

this advantage, there are mainly two drawbacks. Firstly, the

influence of the prior might not be optimal, especially in

the case of partial occlusions. Secondly, the prior does not

specialize to a specific object. Thus, tracking multiple, sim-
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Figure 2. Tracking of a texture patch against a similar and cluttered background. State-of-the-art adaptive trackers (first row; dotted cyan:

supervised [8]; dotted pink: semi-supervised tracker [10]) might suffer from problems concerning (i) drifting, (ii) distinguishing similar

objects, and (iii) robustness to partial and full occlusions. Our proposed approach (second row) is both more stable and more robust.

ilar objects (e.g. several faces) is not directly feasible and

the tracker can wrongly switch to those other objects. We

overcome this limitation by extending the semi-supervised

learning approach with adaptive priors as depicted in Fig.1.

As shown in Fig. 2 our proposed approach (bottom row)

is able to be more adaptive but at the same time also more

stable than the adaptive trackers (top row). The on-line,

adaptive tracker [8] (dotted cyan) is still tracking the ini-

tial object under partial occlusion, however it may adapt

wrongly to the occluder and start tracking it after a while

(b). In contrast, the semi-supervised tracker [10] (dotted

pink) loses the object since the changed appearance can not

be explained by the prior until the object gets fully visible

again. Due to their discriminative power, all trackers are

able to track the object in front of a very similar background

(c). However, if a sheet with similar texture appears in front

of the initial object, the adaptive trackers will not notice the

difference and start tracking a piece of the similar object

(d). The semi-supervised tracker has the ability to return

afterward to the object whereas the on-line tracker does not

recover from drift (e). We propose an approach which has

no difficulties with this scenario.

The reminder of the paper is organized as follows.

Sec. 2.1 briefly reviews and discusses limitations of for-

mer on-line boosting based tracking. Our approach, which

extends semi-supervised tracking, is described in Sec. 3.

Sec. 4 presents detailed experiments and compares them to

the existing approaches. Finally, conclusions are presented

in Sec. 5.

2. Preliminaries and Discussions

Before introducing our novel tracking approach, we re-

view and discuss the two basic types of classifiers which are

used for tracking.

2.1. On-line Boosting for Feature Selection

The goal boosting [7] is to minimize the error by select-

ing and combining a set of N “weak” classification algo-

rithms {hn(x)|hn(x) : X → {+1,−1}} into a strong clas-

sifier

H(x) = sign(f(x)) where f(x) =

N∑

n=1

αnhn(x) . (1)

The absolute value of f(x) (which is related to the mar-

gin) can be interpreted as a confidence measure. For on-

line training the strong classifier is initialized at the begin-

ning and is updated by each training sample. The individ-

ual weak classifiers are updated according to an importance

weight λ (i.e., samples which are misclassified are given

more importance), which is propagated through all of them.

Supervised: Boosting can be used for feature selec-

tion [22], where the features correspond to weak classifiers.

Here we describe the on-line [8] variant, where the main

idea is to perform on-line boosting on selectors rather than

on the weak classifiers directly. A selector holds a set of

M weak classifiers and selects the one with the lowest es-

timated error. A strong classifier is (randomly) initialized

with a fixed number of N selectors hsel
1

, .., hsel

N
. Firstly, the

weak classifiers in each selector are updated, as soon as a

new training sample 〈x, y〉, x ∈ X , y ∈ {+1,−1} is avail-

able. Secondly, the importance weight λ0 of the sample is

initialized to 1, which is used to update the weak classifier

(any on-line learning algorithm is applicable).

Semi-Supervised: Recently, the supervised approach

was extended in order to include unlabeled data [10], based

on the idea of considering pairs of samples which are con-

nected via a similarity measure. Similar samples (i.e., a la-

beled and an unlabeled sample) should share the same la-

bel. In fact, a prior classifier HP (x) is used for that pur-



pose. Similar to the on-line supervised version, the impor-

tance weights encode information from one weak classifier

for the next. For labeled examples the supervised boosting

approach is used directly. For unlabeled examples, not only

the importance is adapted, but also the label is re-estimated.

More formally, in each selector n, a pseudo-label yn and

pseudo-importance λn are set according to

yn = sign(z̃n(x)) and λn = |z̃n(x)|,where (2)

z̃n(x) = tanh(HP (x)) − tanh(Hn−1(x)). (3)

is calculated depending on the prior classifier HP (x) and

the current on-line classifier H(x).

Influence of the prior: Using supervised boosting, i.e.,

the true label is given, the importance of the example is

adapted according to the misclassification error. In semi-

supervised boosting, unlabeled samples can be included

whereas a prior classifier determines their pseudo-label and

their importance weight. If the prior is very confident, it

dictates the label. A label switch can happen, i.e., H(x)
can overrule HP (x), if z̃n(x) has a different label than the

prior HP (x). As can be easily seen from Eq. (3), this is the

case if |Hn(x)| > |HP (x)|. Therefore, the more confident

the prior is, the longer (with respect to n) the label is not

allowed to change. Another interpretation can be made by

rewriting the right hand side of Eq. (3) as

cosh(Hn(x)) sinh(HP (x)) − cosh(HP (x)) sinh(Hn(x)).
(4)

Since cosh(·) ≥ 1 weighs the decision of the correspond-

ing classifier (sign of the asymmetric sinh(·) function), un-

labeled data is used for regularization. Similar to the co-

training assumption [3] the prior classifier should be never

“confident but wrong”. In order to put more emphasis on

the prior or decrease its influence an additional factor might

be used to scale it. In extreme cases the prior may van-

ish (drifting might happen) or may dominate too much (no

adaptation is possible at all). This mainly addresses the as-

sumptions of semi-supervised learning [24, 19].

2.2. On-line Boosting for Tracking

On-line boosting used for tracking generally works as

follows. The tracking loop is initialized with a detection.

Then, an initial classifier H is built by taking positive sam-

ples from the object and negative ones from the surrounding

background. The classifier is evaluated exhaustively on the

image (or a provided local search region) at time t + 1. The

resulting confidence distribution is analyzed and in the sim-

plest case the local maximum is considered to be the new

object position. In order to adapt to appearance changes

of the object (e.g. different illumination) or changed back-

ground, the classifier gets updated and the loop repeats. In

contrast to the supervised on-line boosting tracker [8] which

(a) Detection (b) Supervised tracking

(c) Semi-supervised tracking (d) Our Approach

Figure 3. Drifting vs. adaptation: A fixed object detector does not

suffer from the drifting problem. However, to be adaptive, e.g.,

to appearance changes, on-line updates are performed in a super-

vised manner (filled circles, b). By formulating tracking as a semi-

supervised learning problem, only unlabeled data is used during

tracking (empty circles, c). This limits drifting but may restrict the

adaptivity too much. Our proposed approach (d) makes use of ad-

ditional information and extends the semi-supervised learning by

an adaptive and object specific prior.

uses fixed self-labeled updates, the semi-supervised on-line

boosting tracker [10] takes a detection to initialize the track-

ing classifier which is then only refined with unlabeled data

(i.e., the detector result serves as prior). Drifting is limited

since the tracker cannot get too far away from the prior. The

tracking principles are summarized in Fig. 3.

Beside the advantages of semi-supervised tracking ex-

posed before, typically two problems arise in practice:

Limited appearance changes and partial occlusions:

Possible appearance changes or dominant partial occlusions

are also interpreted as some sort of drift. Thus, they are lim-

ited by the prior as well, i.e., the prior might be too strong,

too weak, or even certainly wrong. Without any external

knowledge, this is summarized by the stability-plasticity

dilemma [12]. Thus, really informative examples are those

which are not in consonance with the prior model1.

No discrimination between different objects from one

class: The prior might be too generic in the sense that it cov-

ers variations between different objects of the same class.

For instance, having a face detector as prior, it is not pos-

sible to distinguish different persons. Thus, recognition is

not taken into account and the tracker is likely to jump to

similar objects.

The tracking approach so far can also be seen as tracking

by detection. However, in practice, the tasks of detection,

tracking and recognition are highly coupled.

1There are also relations to active learning and bootstrapping used for

training of high performance detectors [22].



Figure 4. The core classifier system consists of an off-line, an on-

line supervised and an on-line semi-supervised classifier which are

interpreted as detector, recognizer and tracker. The classifiers in-

teract via information flows thus avoiding direct feedback loops

which may cause drifting.

3. Beyond Semi-Supervised Tracking

Based on the previous discussions, we propose a mul-

tiple classifier framework in which detection, recognition,

and tracking are highly coupled, see Fig. 4. We assign

to each individual classifier a specific sub-task interpreted

as ’detection’ (finding the object of interest), ’recognition’

(distinguishing similar objects in a scene) and ’tracking’

(retrieving the object to be tracked). We make use of tempo-

ral and spatial assumptions which can be made in visual ob-

ject tracking2 to train the classifiers on different training sets

in the spirit of simplifying each classification task. How-

ever, the desired benefit of being more adaptive comes with

a restricted temporal and spatial applicability.

Summarizing, the challenge is to include training data

during tracking in a robust manner, e.g., without drifting, in

order to increase adaptivity.

3.1. Multiple Classifier System

Two types of on-line classifiers are used in the proposed

system. There are supervised classifiers for including trust-

worthy information and semi-supervised classifiers for in-

cluding less reliable information derived during tracking.

In the following we describe each classifier in detail. The

information exchange between the classifiers is emphasized

in Sec. 3.2.

Detector (off-line classifier): The goal of the detector is

to reliably find the object of interest. The detector classifier

is not updated during tracking to guarantee a fixed false pos-

itive and detection rate. Any kind of object detector can be

integrated in the system, see Sec. 4. The detector is generic

2Contrary to a pure machine learning approach in which detection,

recognition, and tracking might be coupled differently, e.g., by transfer

learning (see [17] for a survey).

and should be applicable on any scene.

Recognizer (supervised on-line classifier): The recog-

nizer is object specific and serves as an adaptive prior for

tracking. Updates are only performed conservatively. The

positive training set consists of tracked samples which are

validated by the detector. The negative training set is com-

posed of hard examples collected in the background im-

age at the time of a detection. This allows to distinguish

similar objects in a scene. Additional negative updates are

performed at the tracked position in the background image.

Thereby it is assured that static occluders will be present in

both training classes and implicitly ignored by the classifier.

The recognizer is only valid in the specific scene during one

track.

Tracker (semi-supervised on-line classifier): The

tracker is essential to retrieve the object in the next frame.

The confidence map is analyzed via semi-supervised

updates to retrieve a stable maximum, see Sec. 3.4. The

tracked object samples are then given to the detector to

eventually update the recognizer. The tracker is only valid

in the search region of the tracked object during one track.

The novel recognizer is balancing between semi-supervised

tracking [10] (without adaptation, recognizer = detector)

and on-line tracking [8] (full adaptation, recognizer =

tracker). The recognizer is an on-line supervised classifier

as it can be reliably updated by the detector. On the

other hand it is serving as a prior for the tracker which

is a semi-supervised classifier to prevent drifting. The

recognizer can also be interpreted as an object instance

detector trained in case of a generic detection at the tracked

position. Therefore, with more training data, the recog-

nizer is able to aggregate information during tracking to

progressively specialize and improve the model. Moreover,

multiple object tracking becomes feasible as the recognizer

distinguishes similar objects in the scene.

3.2. Information Exchange

In the proposed system feedback loops are strictly

avoided to prevent accumulation of small errors, i.e. drift-

ing. However, there are two simultaneous information flows

which are validating the current track in order to be adap-

tive. The information flows separate the tasks of determin-

ing the position of the object (tracking flow) and updating

the classifiers at the given position (detection flow).

Detection flow: A new recognizer and a new tracker

are initialized if a detection has no overlap with an existing

tracked object. The recognizer is updated only if a detection

has high overlap with an existing tracked object.

Tracking flow: Once a track is started, the tracker de-

termines the position of the object with the recognizer as

prior.



Hence, the tracker is the dominant element in our ap-

proach since it is sampling the positive training data by de-

termining the position of a possible re-detection. In other

words, the tracker is exploring the data to be included in its

prior. Our experiments show that this approach is suitable

for robust tracking in case of multiple similar objects which

are partially or fully occluded. However, we regret that no

theoretical underpinning could have been made up to now.

3.3. Extensions

Re-identification to bridge short temporal gaps is done in

separated supervised classifiers. Additionally, all tracking

results of the specific scene are aggregated to train supple-

mentary local detectors in case of static cameras.

Identifier (supervised on-line classifier): The identifier

is used for re-identification of a tracked object whose track

has been lost. Although we propose to train a separate clas-

sifier for identification, in principle, any identification sys-

tem can be used. Positive updates are taken from the current

tracker and negative ones from all the other identities. Once

a tracker has lost its object, the identity is only stored for

a limited time in order to bridge short time gaps. Hence it

is valid only at the location of tracked objects for a limited

time. This allows to handle the data association problem.

Local Grid Detectors (supervised on-line classifiers):

The local grid detectors are used to aggregate tracking re-

sults. A local detector is created on a grid at each tracked

position (similar to [18]). The classifiers are trained each

time any tracked object passes. The positive update is made

with the object, the negative update is performed with the

background image at the same position. So, each local de-

tector has the very simple task to distinguish foreground

from background at one location only. The local detectors

are generic and only valid at a specific location in the scene.

The output of the classifier is not used to trigger tracking

in order to prevent feedback loops. Indeed, the local detec-

tions can help to substitute tracking when a track is lost. In

contrast to the classifier grid of [18], we are able to gather

positive samples of the particular scene. This idea is further

exploited in [20].

3.4. Analysis of the Confidence Map

The search for the most likely position of the object in

the next frame is modified in order to stabilize the tracked

position. In former approaches (further described in Sec.

2.2), the classifiers are evaluated on the image and shifted

directly to the maximum of the confidence map3. We pro-

pose a different method using semi-supervised classifiers.

In fact, we first perform unlabeled updates at the position

of the supposed maximum in the image and at the same

3Or using more sophisticated methods, e.g., by first smoothing the con-

fidence map or by applying non-maxima suppression.

position in the background image. Only if that position re-

mains the maximum, we continue tracking. Experimentally,

this approach shows superior results in case of partial or full

occlusions.

4. Experiments and Discussion

The proposed tracking approach is able to track a variety

of objects in challenging situations. We performed exper-

iments in order to demonstrate its abilities in comparison

to [8] and [10]. During the experiments, we explored three

different kinds of fixed detectors: (i) the face detector taken

from OpenCV 1.04 [22] (ii) a state-of-the-art person detec-

tor [6], and (iii) self-trained detectors similar to one-shot

learning in [10].

Each classifier in our system is a boosted strong classi-

fier which consists of 50 selectors having access to a dy-

namic pool of 100 weak classifiers, the actual image fea-

tures. We use Haar-like features, histograms of oriented

gradients, and color histograms. The latter are only used

for classifiers which are object specific and only valid for a

certain period of time (e.g. the recognizer and the tracker).

As background image we always take the previous frame

excluding the tracked region from being changed.

The performance depends on the size of the search re-

gions, maximum number of objects to be tracked, and min-

imum displacement of the tracking region. In our experi-

ments we do not use a motion model to estimate a scaled

search window, however, it could be incorporated quite eas-

ily. All experiments are performed on a common 3.0 GHz

PC Dual Core with 2 GB RAM, where we achieve typically

10 fps with our non optimized C++ implementation5.

Quantitative comparison (Tab. 1): We evaluated three

trackers based on on-line boosting using recall, precision

and f-measure similar to object detection [1]. We manu-

ally marked the object in each frame to obtain the ground

truth. If the overlap between the tracker and the ground

truth bounding box (with a fixed scale) is greater than 75%,

we count the frame as true-positive. False-negatives are

counted if nothing or something else is tracked but the ob-

ject is still visible. False-positives typically indicate drift-

ing since the tracker loses the object. Summarizing, the re-

call (tracking success) of our approach is very similar to the

semi-supervised tracker, whereas it shows a superior preci-

sion.

Implicit recognition through a background model

(Fig. 5, 1st row): This experiment shows that the recog-

nizer is able to distinguish very similar objects. In fact,

the on-line and the semi-boosting trackers prefer to jump

4http://sourceforge.net/projects/opencvlibrary/,

03/16/2008
5Precompiled Win32 binaries as well as the complete source code is

available at http://www.vision.ee.ethz.ch/boostingTrackers/



Figure 5. Comparisons of our proposed tracker (yellow) and the related on-line tracker (supervised: dotted cyan; semi-supervised: dotted

pink). Our approach is more adaptive while still being robust to occlusions, identity changes and drift.

On-line [9] Semi [10] our approach

recall 0.15 0.76 0.76

precision 0.89 0.32 0.99

f-measure 0.26 0.45 0.86
Table 1. Recall, precision and f-measure of boosting based trackers

for the sequence shown in Fig. 1.

to a similar object instead of tracking the object changing

its appearance. The proposed tracker, however, is trained

negatively on the background image and will not confuse

the initial object with the similar ones. In case of a large

appearance change (3rd image) it looses the track and re-

detects it afterward (4th image).

Tracking with a moving camera (Fig. 5, 2nd row):

Even though we are using a background model we are not

restricted to a static camera. As the background image is

built from the previous frame, we quickly adapt to changed

conditions like different illumination or a moving camera.

Our approach performs similarly to the compared trackers.

The proposed approach lost the track in case of too much

motion blur instead of tracking something else (4th image)

and successfully re-detects it shortly after (5th image).

Long-term tracking (Fig. 5, 3rd row): This experiment

shows tracking performance in the long-term. A static ob-

ject with significant appearance changes has been tracked

for 24h. The on-line tracker is slowly drifting, whereas

the semi-supervised tracker can not handle large appear-

ance which are limited by the fixed prior. The proposed

tracker is more adaptive to appearance changes than the

semi-supervised approach (3rd and 5th image) without drift-

ing.

Figure 6. Three most important features selected by the local de-

tector at the corresponding tracked position trained while tracking

the object moving from the left to the right behind a static occluder.

Implicit static occlusion handling (Fig. 6): This ex-

periment shows that static occluders are implicitly ignored

by the classifiers. A one-shot detector is trained in the first

frame to track the toy. Local detectors are trained during

tracking. In Fig. 6 the location of the three most important

Haar-like features of the local detector at the tracked posi-

tion are shown. The static occluder (green cotter) is present

in the image and the background image which are to be dis-

tinguished by the local detector. Thus, no discriminant fea-

tures are selected on the occluder (green cotter).

Local detectors (Fig. 7): In this experiment we show the

qualitative characteristics of the local detectors in a chal-

lenging surveillance sequence6. As input we applied the

person detector to the single images. We manually esti-

mated the ground plane to reject detections at wrong scales

6i-Lids medium sequence, ftp://motinas.elec.qmul.ac.uk/

pub/iLids/, 03/06/2009.



Figure 7. Local detectors (white) trained through information aggregation in specific image regions, compared to the input detector (pink).

and to align the local detectors. The typical application of

local detectors is 24/7 surveillance, where it is helpful to ag-

gregate scene knowledge over time to gain in performance.

However, only qualitative results are presented as the local

detectors are not the primary scope of this paper.

Multiple object tracking with re-identification

(Fig. 8): In this experiment, we take a face detector

and track two persons7. Temporal gaps are bridged by

re-identification. The emphasis is put on the matching of

the identities when they reappear in a similar pose. The

longer the track, the higher the likelihood of a successfull

re-identification as more appearance changes can be

integrated. The identification matching is done very con-

servatively, i.e., only if an identifier has significantly higher

response than all others. Sometimes a re-identification may

fail because the appearance is too different (e.g., id2 and

id3). However, both actors can be successfully matched to

their initial tracks without confusing the identities.

Typical updates of each classifier (Fig. 9): Here, the

previous experiment is described in detail to give some in-

sight into the typical updates of each classifier. The face

detector typically finds frontal faces which are used as pos-

itive updates of the recognizer. The tracked objects contain

clearly more appearance changes than the detected objects.

Indeed, the tracker which is sampling the patches is more

adaptive than the recognizer. Note, that the confidence maps

are only meaningful in certain locations, e.g., the identifier

confidences are only used on the current tracked faces.

5. Conclusion

We presented a multiple object tracking approach ex-

tending semi-supervised tracking by object specific and

adaptive priors. Valuable information which would be ig-

nored in a pure semi-supervised approach is safely included

in the prior using a detector for validation and a tracker

for sampling. The prior is interpreted as recognizer of

the object as similar objects are distinguished. If a track

is lost, we can re-identify the object by separately trained

re-identification classifiers. The tracked objects are used

to train local detectors to simplify detection in the specific

scene.

7Dev Patel and Freida Pinto in a talk about their movie Slum-
dog Millionaire, http://www.youtube.com/watch?v=cwzwhHB_L4Q,

03/06/2009.

The novel classifier framework is able to track various

objects, even under appearance changes and partial occlu-

sions, in challenging environments. Drifting is limited due

to careful use of supervised updates and preventing feed-

back loops. Our experiments show superior performance

compared to previously proposed adaptive trackers.
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