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ABSTRACT

Automatic and real-time identification of unusual incidents
is important for event detection and alarm systems. In to-
day’s camera surveillance solutions video streams are dis-
played on-screen for human operators, e.g. in large multi-
screen control centers. This in turn requires the attention
of operators for unusual events and urgent response.

This paper presents a method for the automatic identifi-
cation of unusual visual content in video streams real-time.
In contrast to explicitly modeling specific unusual events,
the proposed approach incrementally learns the usual ap-
pearances from the visual source and simultaneously iden-
tifies potential unusual image regions in the scene. Exper-
iments demonstrate the general applicability on a variety
of large-scale datasets including different scenes from public
web cams and from traffic monitoring. To further demon-
strate the real-time capabilities of the unusual scene detec-
tion we actively control a Pan-Tilt-Zoom camera to get close
up views of the unusual incidents.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis— Tracking; 1.5.3 [Pattern Recognition]|: Clus-
tering— Algorithms

General Terms
Algorithms, Security

1. INTRODUCTION

Unsupervised and real-time detection of unusualness in
video streams is a prerequisite for identifying interesting and
critical situations in surveillance scenarios, see Fig. 1. Hu-
man operators have limited attention spans as well as cog-
nitive limits in respect to how many different video streams
can be observed simultaneously. In large multi-screen con-
trol centers it would therefore be beneficial to automatically
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Figure 1: [St. Gallen 22/04/2010 05:24] Real-time
detection of unusual incidents in image streams is
essential for generating immediate alerts.

activate or switch to the camera view(s) of interest. Ob-
viously, for this task real-time performance is needed. A
second application is video summarization. As example one
might think of having a short video documentation of un-
usual situations observed over a weekend (e.g. on a con-
struction site).

Abnormality detection is a classical task in computer vi-
sion and hence many different approaches were proposed
over the last two decades, e.g. [5, 6, 7]. Most approaches
build and partly also update a model of normality. This
model represents typical situations or behaviors observed in
the data stream. One definition of normality is if very sim-
tlar content has been observed at least once in the past [8].

Based on this paradigm approaches have been proposed
recently which store (cluster) the observed data. By using
the concept of meaningful nearest neighbors outliers can be
detected and used for scene based abnormality detection [1]
or video summarization [3]. The benefit is that no scene-
specific, manually tuned similarity threshold for the classi-
fier has to be set. A purely data driven approach has the
advantage that it works on different scenes without human
intervention. Further it allows to automatically and perma-
nently adapt to changes.

Our approach extends ideas from meaningful nearest neigh-
bors abnormality detection [1] and additionally focuses on
the localization of regions with “unusual” content in an im-
age. In fact, instead of modeling the whole scene at once, we
propose to use an overlapping grid of small abnormality de-
tectors, similar as in classifier based background models [4].
For updating the local abnormality detectors, we propose an
efficient, yet simple, and therefore real-time method.

The remainder of the paper is structured as follows. Sec. 2
describe details of our approach for unusual region detection.
Sec. 3 presents experimental results, demonstrating the ap-
plicability of the approach on a variety of datasets. Addi-
tionally, we show a real-time application for active camera
control. Finally, Sec. 4 concludes the paper.
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Figure 2: For evaluation descriptors are calculated
in the current input and compared to the model of
observations. The resulting confidence map is seg-
mented into an unusual region. The training of the

model is done in parallel.
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Figure 3: For a single highlighted block the image
patches related to the cluster centers of the local
model are shown with their observation percentage.

2. UNUSUAL REGION DETECTION

Inspired by the recent work of [1] we use a purely data
driven approach and build a model of usualness by storing
representative clusters of observed data. The overall process
is shown in Fig. 2 and described in the following. For ac-
curate localization the input image I is divided into small
partly-overlapping blocks where individual abnormality de-
tection is performed. Each block i is represented by a local
descriptor x; € IR™ and compared to the local model of
usualness M;. The local models consist of relevant visual
observations from the past, i.e. a number of representa-
tive cluster centers are stored for each block as shown in
Fig 3. For evaluation new observations are compared to pre-
vious representative observations. In order to keep track of
a changing environment the local models are incrementally
updated. To prevent a currently observed unusual region to
become usual in the next frame, the training is done with
a time delay. In a post-processing step the responses of the
individually evaluated blocks are combined to regions.

Feature Descriptor. As feature representation for the
observed visual content we use Histograms of Oriented Gra-
dients(HoG) [2]. In order to account for changes in illumi-
nation and contrast, the gradient strengths are locally nor-
malized in each block. In fact, we use 9 rectangular cells
(i.e. R-HOG) and 9 bin histogram per cell and concatenate
them to a 81-dimensional feature descriptor x;.

Model and Training. Our model of observations con-
sists of a set of local models M;. For each M; observed
data from the past is stored in maximum N representative
cluster centers. Each cluster center m;; (j = 1..N) is a fea-
ture descriptor. An associated observation percentage f; ;
which represents the number of observations in the cluster
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Figure 4: Three different cases during training. An
observed input creates a new cluster center, replaces
or gets assigned to an existing cluster center.

is stored. A local model is updated with the current input
observation x;. In the proposed approach we augment the
concept of meaningful nearest neighbours and the on-line
clustering approach of [1]. For achieving real-time per-
formance we consider practical implementation issues and
propose the following rules for training and evaluation. Our
approach is based on two distances. First, the best match,
i.e. the minimum distance from x; to all other cluster cen-
ters in M, is computed as

d"(x;) = min d(xi,mi;). (1)

where the distance function d(-, -) compares two descriptors.
Second, the closest pair of cluster centers in each M; is deter-
mined, i.e. the pair with the minimum inner model distance
d*(M;) = min
mi,1,m4,2€M;
mg 1 F£m; 2

d(mi, mi2). (2)

As depicted in Fig. 4, we consider three different rules for
updating the model in the following sequence:

Rule 1. x; replaces a m;; if d*(x;) > d*(M;). The
m;,; with the lower f; ; of the closest pair is merged into
the other cluster of this pair. The x; ; of the merged m; ;
remains unchanged whereas the new f;; is computed by
adding the individual observation percentages. This is done
in view of achieving an uniform distribution of the cluster
centers, while keeping the complexity of M; constant.

Rule 2. x; extends the model by creating a new m; ; if
d*(M;) > d*(x;) > k d*(M;) where k = M]{,i‘ is the ratio of
the current model size to the maximum size. Consequently
only as many cluster centers as needed will be created which

depends on the variety of the observations.

Rule 3. x; is assigned to a m; ; if d*(x;) < k d*(M;).
The f;,; of the nearest neighbour m; ; is increased.

Our approach has a two-fold ability to unlearn: implicitly
by merging cluster centers and explicitly by removing clus-
ter centers in case the elapsed time to the last observation
exceeds a certain threshold. This cleans up very rare ap-
pearances which might degenerate the model.

Evaluation. The evaluation of a current observation x;
is based on the score for unusualness

1 d*(x) > d" (M)
s(xi) = { fvlv otherwise ®3)
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where j denotes the closest cluster center. If the current ob-
servation cannot be matched with one of the existing cluster
centers the maximum score for unusualness is reported. If
a close cluster center is found, the score is indirectly pro-
portional to its observation percentage. The final detection
regions are composed of all blocks with score s(x;) > 0.5.

Real-time performance optimization. Once a model
is well trained, the processing time can be reduced with-
out significant loss in accuracy by skipping input frames for
training. The fact that the number of cluster centers for
each block is flexible takes into account the variance in im-
age content across different image regions. Since only the
minimum necessary cluster centers are stored, the effort for
comparing and storing is limited. A further optimization
concerns evaluation. Here, the computational expensive cal-
culation of the nearest neighbor is limited to cases where the
input descriptor has a significant difference to the previous
input descriptor, in our experiments set to 1% of the dis-
tance space.

3. EXPERIMENTS AND RESULTS

In this section we demonstrate the general applicability
of the proposed approach on a variety of datasets and the
real-time performance in an active camera tracking frame-
work. As part of a video track, this paper comes with a 4:30
minutes long video - please watch it for more illustrative
results.

3.1 Unsupervised Unusual Region Detection

Data. For our experiments we apply the detector to sev-
eral different realistic large-scale datasets including videos
with 25 fps frame rate: Street(4 days), Highway(20 h), Car
plant(16 h), low frame rate: Brest'(4 days), Billboard®(12
h) and the previously published Time Square [1](50 days).

Parameter setting. As parameters we used a grid of
semi-overlapping blocks with size 48 x 48 pixels and a max-
imum number of 120 cluster centers. As distance function
the computationally efficient normalized cross-correlation is
used.

Computational Performance. When analyzing every
single frame of a video stream in SD resolution the average
processing time is real-time (20 fps) including video acquisi-
tion on a 2.66 Ghz Intel Dual Core. The memory consump-
tion of a model with 6160 blocks and an average number of
40 cluster centers is around 130 MB.

Evaluation and Results. A manual assessment of un-
usualness for quantitative evaluation is highly subjective and
may not be significant since it clearly depends on the defi-
nition of task and the evaluator. For this reason and due to
lack of existing benchmark data (ground truth), we limit the
evaluation to a qualitative investigation and interpretation
of the detection results. Fig. 5 shows sample results from
the dataset. Unusual regions indicated by polygons are de-
tected even in cluttered scenes. The fact that the approach
produces plausible results on multiple extremely different
datasets demonstrates its general applicability.

A comparison of the results obtained in the Times Square
dataset with results from a related work [1] shows that we are

1http ://camera.brest.by/view/index.shtml
2h1:1:p://216 .203.115.186:5001/view/index.shtml

Figure 6: Unusual regions identified in a low res-
olution static camera (left) used to steer an active
camera automatically for making close-ups of the
scene (right).

not only able to detect similar unusual appearances but we
are also able to localize them quite accurately. Limitations
of the approach in terms of ’interestingness’ are depicted
in the sample frames in the bottom row (n-p) of Fig. 5,
where appearances that seem usual for the Times Square
are wrongly detected. The main reason for undesired de-
tections are changing shades and configurations of salient
edges. These detections do not indicate interesting appear-
ances, yet they have actually never be seen before on that
location. A typical output during initial model training is
shown in (m). The duration depends on the amount of ac-
tivity in the scene, for Times Square the model learned the
normality within 2000 frames.

3.2 Active Camera Tracking by Unusualness

Practical surveillance applications demand real-time pro-
cessing performance as an important factor. For demon-
strating the real-time processing capabilities, our approach
is used within an active camera tracking application. The
overall system consists of a static camera and an active cam-
era with (partly) overlapping fields of view. The goal is to
immediately steer the active camera using pan-tilt-zoom op-
erations to the place of interest if an unusual situation is
observed in the view of the static camera.

Camera Network. For identifying the single focus of
attention, all blocks evaluated as unusual are segmented into
a single convex hull. Calibration information is used for
transforming the position of a detected unusual region in
the static camera to absolute pan and tilt angles. Zoom is
adapted in regard to the size of the unusual region. In case
observations in the static camera are identified as usual, the
active camera focuses on the area where unusualness was
most frequently detected in the past. Fig. 6 shows exem-
plary results of close-ups of unusual scenes captured from the
active camera (Axis 213 PTZ). The unusual appearances of
a person sitting on the sidewalk and off-limits crossing is de-
tected in the static view and the active view is immediately
steered to the detected region using pan-tilt operations. This
shows that unusual regions can be detected fast enough, i.e.
in real-time so that it is possible to control active cameras
accordingly.
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Figure 5: Exemplary results of unusual regions detected in 6 different datasets. Common appearances such

as moving cars and pedestrians are classified as usual.
watch the video contribution submitted with this paper.

4. CONCLUSION

A fully automatic approach for the detection and localiza-
tion of unusual regions in image streams is presented. The
unusualness detector classifies regions as unusual if a sim-
ilar visual appearance has not or rarely been observed in
the past. Promising results on 6 very different datasets and
real-time active camera tracking triggered by unusualness
are presented. In the future we plan to extend the feature
representation with motion descriptors for recognizing un-
usual object movement.
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