3D Tracking in Unknown Environments Using On-Line Keypoint Learning for
Mobile Augmented Reality

Gerhard Schall Helmut Grabner

Dieter Schmalstieg

Michael Grabner

Paul Wohlhart
Horst Bischof

Graz University of Technology
Institute for Computer Graphics and Vision
{schall, hgrabner, mgrabner, wohlhart, schmalstieg, bischof}@ icg.tugraz.at

Abstract

In this paper we present a natural feature tracking algo-
rithm based on on-line boosting used for localizing a mo-
bile computer. Mobile augmented reality requires highly
accurate and fast six degrees of freedom tracking in order
to provide registered graphical overlays to a mobile user.
With advances in mobile computer hardware, vision-based
tracking approaches have the potential to provide efficient
solutions that are non-invasive in contrast to the currently
dominating marker-based approaches. We propose to use
a tracking approach which can use in an unknown envi-
ronment, 1.e. the target has not be known beforehand. The
core of the tracker is an on-line learning algorithm, which
updates the tracker as new data becomes available. This
is suitable in many mobile augmented reality applications.
We demonstrate the applicability of our approach on tasks
where the target objects are not known beforehand, i.e. in-
teractive planing.

1. Introduction

Augmented Reality (AR) is a powerful user interface for
mobile computing and location-based systems. AR super-
imposes registered 3D graphics on the user view of the real
world, allowing the user to share the computers perception
of the environment. Mobile augmented reality systems pro-
vide this service without constraining the users whereabouts
to a specially equipped area. In recent years mobile comput-
ing devices have seen immense progress in miniaturization
and performance. With the advent of smaller mobile and
even handheld computing devices the challenge of develop-
ing computationally efficient algorithms for these devices
increases.

One of the major technological issues in order to create
mobile AR solutions is registration. The rendered graphics
need to be aligned accurately with the real world view of
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Figure 1. An augmented reality scene with a fiducial marker track-
ing approach (a) and our marker-less tracking (b) for an indoor
application. In the applications we assume that we do not know
the target object in advance, which is the case for many planing
task, especially for outdoor applications (c).



the user. Consequently, the demands for robust and high-
accuracy tracking are strong in order to achieve satisfying
registration with limited computational resources. In this
context, the applied tracking approach is the key enabler for
high-quality AR applications. Tracking approaches for mo-
bile augmented reality are subjected to challenging condi-
tions, such as high variability of the environment (tracking
targets), blur, changes in illumination, sudden motion, re-
flection and occlusion.

In particular, we consider the application in the mobile
AR project Vidente! for visualization and planing of under-
ground GIS infrastructure in 3D [26]. The tasks within Vi-
dente include table-top models, which can be used for AR
urban planning as well as outdoor activities. The goal of
this application is to provide egocentric visualization of 3D
underground infrastructure data from geospatial databases
providing a variety of dynamic visualization styles, like
magic lenses for showing excavations [17]. Figure 1(a)
shows the superimposed underground infrastructure ren-
dered on the map using fiducial markers and whereas in
Figure 1(b) only natural features are used for vision-based
tracking. Especially, this is a requirement for outdoor appli-
cations as depicted in Figure 1(c).

In this paper we focus on an extension of this application
in order to apply the system for planning purposes in un-
known environments. Due to the large amount of data and
variability no prior model as well as no markers can be as-
sumed to be given. While approaches exist to track natural
feature (see Section 2 for a review of methods) the are either
very slow or have the need of a (long) pre-training phase.
To overcome these limitations, we use a recently proposed
tracker based on on-line boosting for key-point matching [9]
where robust and accurate tracking results can be obtained
in real-time. Despite these properties the major advantage
of the tracker is that it does not require any a priori training
phase and that it can adapt to several appearance changes of
the object (like different lightning condition). Additionally,
the approach can deal with any kind of objects (if they have
at least some texture) and track them robustly even when
they are heavily occluded or move very fast. Furthermore,
we can cope naturally with a large database (many differ-
ent tracking targets) since the on-line learning focuses on a
specific sub-problem.

The rest of the paper is organized as follows. Section 2
discusses mobile augmented reality and shows different ap-
proaches for tracking a mobile computer. In Section 3 we
review the natural feature tracking approach based on on-
line boosting and the applicability for tracking in our mobile
augmented reality scenario. Especially, we demonstrate the
apporaoch within the Vidente framework by experiments in
Section 4. Section 5 concludes the paper and gives an out-
look for further work.

"http://www.vidente.at, 2008/03/14

2. Mobile Augmented Reality

Particularly mobile AR is challenged by a variety of fac-
tors: For example, hardware and tracking equipment needs
to be ergonomic, lightweight enough to carry and at the
same time sufficiently powerful for rendering 3D models.
Additionally, the platform needs to be resistant to indoor
and outdoor conditions as well as functional across a wide
spectrum of environmental conditions including illumina-
tion, temperature and humidity. Prototype systems for out-
door augmented reality include the MARS backpack setup
from Hollerer et al. [12] introducing mobility and Piekarski
[22] with the Tinmith navigation system. However, these
backpack head-mounted display (HMD)-based setups con-
tinue to be inconvenient for mobile AR. By contrast smaller
computers, such as ultra-mobile PCs, can be used as a see-
through AR device [25]. There is a continuous trend to-
wards these more mobile, lightweight and socially accept-
able devices for AR. In general, these systems are mainly
focused on presenting information to the user.

Other topics to be addressed in mobile AR include in-
put and interaction technologies to enable the user to inter-
act with the augmented world. Furthermore, wireless net-
working capabilities need to be considered for accessing re-
motely stored data. But, most importantly for a satisfying
AR experience the digital content needs to be aligned with
the real world accurately. Therefore, highly efficient track-
ing methods are necessary.

Tracking: AR requires 3D real-time tracking, which aims
at continuously recovering all six degrees of freedom that
define the camera position and orientation relative to the
scene, or, equivalently, the 3D displacement of a target ob-
ject relative to the camera. Many mobile AR applications
rely on planar, textured target objects, typically maps and
table-top models. Usually these target objects contain arti-
ficial information to enable tracking (e.g. fiducial markers).
There is a wealth of literature on marker-based tracking ap-
proaches, like ArtoolkitPlus [33] or Artag [4]. The markers
can be designed in such a way that they can be easily de-
tected and identified with an ad hoc method. Illustrative ex-
amples of AR applications that rely on marker-based track-
ing are Invisible Train [32]. The main advantage of tradi-
tional fiducial marker tracking lies in robustness. Addition-
ally, marker tracking is not computationally intensive and
therefore performs well on mobile devices. But otherwise
the major disadvantage is that the markers obscure parts
of the valuable map space and therefore represent an in-
vasive tracking approach. Several strategies can be applied
for addressing these issues, e.g. by using smaller markers or
markers with map content such as a north arrow.

Ideally, only natural features are used for tracking with-
out deploying any fiducial markers. Vision-based meth-



ods offer a potential for accurate, non-invasive, and low-
cost pose tracking. Various approaches are applied to real-
time vision-based localization of a mobile device in the real
world, indoors and outdoors. A majority of vision-based
systems implemented in AR rely on marker based track-
ing, where the environment needs to be prepared before-
hand. But there is a clear shift towards tracking natural fea-
tures such as corresponding points or edges, statring by e.g.,
[30, 29, 23].

Tracking using natural features: Recently for deal-
ing with tracking in larger environments model-based ap-
proaches became popular for achieving real-time tracking
by re-projecting features of the given 3D model into the
2D image. Pose estimation can for example be done by
least-squares minimization of an objective function [24, 2].
The main advantage of model-based methods is that the a-
priori knowledge allows improving the robustness and per-
formance by being able to predict hidden movement of the
object. It is obvious that this approach needs more compu-
tational power since the task is more demanding than sim-
ple marker tracking approaches. But, since it is often not
possible to provide the relevant 3D models, other tracking
approaches are needed.

However, it is possible to simultaneously estimate both
camera motion and scene geometry, without any such
model. These methods use on-the-fly techniques based on
simultaneous location and mapping (SLAM) approaches.
In [34] Williams et al. presented a real-time system based
on monocular SLAM which automatically detects and re-
covers from tracking failure while preserving map integrity.
By extending recent advances in keypoint recognition the
system can quickly resume tracking. In [18] Nister showed
a real-time pose estimation approach in completely un-
known scenes. However, long-term stability of that ap-
proach is not optimal, because the algorithm tends to drift.
Using some of the absolute information is a way to elimi-
nate the drift problem. In order to increase accuracy and ro-
bustness Chen et al. [1] use a priori knowledge, in the form
of a small number of calibrated keyframes and a rough 3D
model, for their natural feature algorithm.

Tracking of objects or natural image patches is nowadays
often formulated as a classification problem (e.g. [7, 14]).
The approaches can be summarized as tracking by (fast re-)
detection. In contrast to methods using a fixed metric for
keypoint description (e.g. SIFT [15]), discriminative learn-
ing of keypoint descriptions allows incorporating scene in-
formation (e.g. FERNS [21]). In order to overcome the
speed limitations (even with fast implementations, like [8]),
efficient keypoint matching using classifiers have been pro-
posed (e.g. [14]). Even though the on-line tracking phase
can be done very fast, the approach has some limitations.
The objects have to be learned off-line (including all possi-
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Figure 2. Tracking framework: From a given image the keypoints
are extracted, which were matched by a set of classifier. To es-
tablish correct matches a robust verification is performed and the
object is detected (tracked). In order to adapt to changes in the
scene (the object as well as the background) the classifiers (which
are describing the object keypoints) gets updates. Positive updates
are from the matching patch, negative are from any other detected
keypoint.

ble appearance changes [16, 14]) and no information of the
current background can be taken into account.

3. Tracking by Learning Keypoints

We use a tacker recently proposed by Grabner et al. [9]
which continuously updates its representation in an on-line
manner. The tracker, reviewed in the following, performs
in real-time, has low memory requirements (as opposed to
FERNS [21] and randomized trees) and is able to robustly
track a large variety of different objects. The idea is to for-
mulate tracking as a classification problem between succes-
sive frames. In fact, this is done by establishing matches
over successive frames. A set of classifiers is learned and
updated continuously in an on-line manner in order to solve
the matching task. The overall workflow is depicted in Fig-
ure 2 and described in the following. Keypoints are ex-
tracted by some detector (e.g. Harris corners [10] or DoG
points [15]) from the whole image. In order to start track-
ing, the assumption is an initial definition of the object re-
gion is given. This can be done either manually or by an
object detector (e.g. using SIFT [15]). Note, when track-
ing proceeds the region is propagated automatically. The
detected keypoints, can be separated into object keypoints
and background keypoints. The surrounding region which
is covered by the patch for the keypoint is used to train
the initial classifiers. Thus, a classifier is connected with
a keypoint and should distinguish it from all the other key-
points. In other words, this yields to a multiclass classifica-
tion problem with a simple one vs. all partition.

Now the tracking loop starts and in order to detect the ob-
ject again we perform the following steps. When a new im-



age frame is available, first, a set of keypoints K points are
extracted. Second we establish possible matches by finding
for each classifier its best possible match

m; = argmax C,(p;) ()

k€K

by evaluation all the classifiers C; on the image patch p;
which corresponds to the j-th keypoint. Afterwards a veri-
fication step for the proposed matches is needed to remove
mismatches. This is done by robust estimation of the ho-
mography using RANSAC [11] over the set of suggested
matches (in our application we assume that the tracked ob-
jectis planar). Thus, a subset of correct matches verified by
the homography is achieved. In case the number of inliers
exceeds a threshold, it is assumed to have correctly deter-
mined the homography and successfully tracked the object.
Therefore, for each classifier its corresponding patch in the
actual frame can be calculated which is then used for mak-
ing a positive update of the classifier. For negative updates
patches extracted from any other keypoint are used. If the
homography can not be established between two consecu-
tive frames no detection is achieved and no updates are ap-
plied. This means, that if the verification is not robust (the
object may have disappeared or the geometric constrained
are violated) no updates of the classifier are made which
limits drifting.

As aresult, our goal is to find a set of classifiers such that
the probability of a correct match is high with respect to the
probability of an incorrect match. For learning and updating
the keypoint descriptors on-line boosting for feature selec-
tion [6] is used. The machine learning algorithm boosting
selects a small subset of simple image features from a large
pool of possible candidates. Haar-like features are used
which can be fast evaluated using integral images [31]. It
allows to generate classifiers that can be efficiently updated
by incrementally applying samples. In addition the classi-
fier provides a confidence measure, which is needed in or-
der to determine the best match (see Equation 1). Since the
problem of discriminating one keypoint from the others in
the current frame is quite simple, the complexity of the clas-
sifiers can be low, the number of used feature can be small
(we use 20). Therefore, the tracker is applicable to real-time
tasks.

Summarizing, in order to track a specific object within
the current scene, the current object keypoints have to be
distinguished from the ones detected in the background.
The usage of on-line classifiers allows to collect samples
over time for improving generalization and in addition, to
adapt keypoint descriptions even if the scene changes. As
a result discriminative classifiers allow to incorporate scene
information by considering them as negative samples for the
keypoint descriptions. Hence, the object can be tracked ro-
bustly even when the appearance changes or under different
illumination conditions.

3.1. Pose Estimation

For tracking a mobile device the pose of the camera is of
interest. The recovery of a 3D camera pose from a set of
object keypoints, for which 3D world coordinates and their
projection onto an image plane are given, is known as the
Perspective-n-Point (PnP) problem [5]. Among others the
POSIT algorithm [3] provides good performance at reason-
able computational cost. POSIT iteratively approximates
the pose by calculating the scaled orthographic projection
(SOP) with respect to a preliminary pose. Then a pose is
searched that better maps the object to the SOP, thus pro-
viding a better estimation of the pose. We apply an exten-
sion of POSIT for planar object point configurations [20].
Since POSIT cannot deal with outliers the algorithm is of-
ten used in combination with RANSAC [11]. Since the key-
point matches coming from the tracker are already checked
for geometric consistency by calculating a stable homog-
raphy with RANSAC, we can use them directly as input
to only one POSIT run. Furthermore, Schweighofer and
Pinz [27] show an efficient method for receiving stable pose
estimations for planar objects. Recently Moreno-Noguer ef
al. presented a non-iterative solution to the PnP problem
running much faster than and as accurate as iterative meth-
ods [19]. By solving the PnP problem the task of tracking a
mobile device reduces to calculating world coordinates for
keypoints found in the image.

For initialization and aligning the real and the virtual co-
ordinate system we manually mark four points in the first
frame. If we know the corresponding world coordinated of
these points and the initial camera pose this is sufficient.
Otherwise, we mark a rectangle and apply similar tech-
niques as proposed by Simon et al. [28]. During runtime
world coordinates for image keypoints that were found on-
line by the tracker can be calculated by back-projection onto
the object plane. Therefore the pose calculated from the
keypoints with known world coordinates from the last step
is used.

4. Experiments

We demonstrate the natural feature tracking approach
via on-line boosting in two scenarios of an augmented re-
ality application. For the tracker we used 25 object key-
points. Each of them is described the local image patch
by selection of 30 features out of a shared feature pool of
50 features (weak classifier). The basic features as well as
the object keypoints are continuously adapted as described
above. With these parameters and our non-optimized C++
implementation we track with about 5 frames per second,
including the visualization. Details where the time is spent
can be seen in Table 1 for a typical tracking sequence. We
chose an ultra-mobile PC (standard Sony Vaio UX, Intel
Core Solo 1.1 GHz, Windows XP, 0.5 kg, Camera resolu-



Figure 3. Setup of the Vidente planning application, where the
user is equipped with an ultra-mobile PC that accurately renders
3D structures and information directly on top of the orthographic
photo of Jakominiplatz in Graz (first row) and setup for the inter-
active outdoor planning tool (second row).

tion 640 x 480) as the core hardware platform, running the
Studierstube? software.

Task | Time (ms) | Percent
Image Capture & Preperation 15 9.49%
Interest Point Extraction 45 28.48%
Object Feature Matching 19 12.03%
Pose estimation 21 13.29%
On-line Feature Update 8 5.06%
Rendering 50 31.65%

Table 1. Timings per frame.

We apply this tracker in the Vidente application that aims
to superimpose underground infrastructure on the real world
to support planners and field workers. They are aided by this
kind of egocentric visualization in tasks such as contrac-
tor instruction, outage management and network planning
of underground infrastructure. First, we show a planning
task, where an arbitrary map can be overlaid with computer
graphic models. We illustrate such a planning task with an
aerial photo on which we superimpose a 3D model of un-
derground infrastructure. That high-resolution aerial photo
was obtained by Vexcel Imaging using an UltraCamX cam-
era [13]. Second, we show how the proposed tracker can be
used in unknown environments to perform planning tasks
outdoors.

’http://www.studierstube.org, 2008/03/14

4.1. Augmented Reality Planning on Maps

This mobile AR application allows the user to superim-
pose graphical content on arbitrary maps. The first row of
Figure 3 depicts the table-top setup. Note that, no prior
learning or any information about the target to be tracked
needs to be known in advance. The digital content overlaid
graphically on the map consists of a 3-dimensional model
of the buried assets and pipe networks. Filtering of objects
such as pipes, trenches or canals can be determined based
on semantic attributes during runtime. This indoor planning
task can for example be used for superimposing planned ar-
chitectural structures and street furniture onto the map or
for redesigning existing architecture. For our experiments
we chose aerial photos that we track via on-line keypoint
learning, but of course the tracking approach is not limited
to a specific kind of maps. Figure 4 depicts an aerial map
as the target object. We need an initial object region for
initialization of the tracker or an initial pose of the object
and its world coordinates for the pose estimation respec-
tively. We apply the following procedure. First, by pointing
the built-in camera of an ultra-mobile PC towards the or-
thographic aerial photo, the user determines the object he
wants to track from the video background. Afterwards the
video is frozen which allows the user to select the target
object on the still image. This is done by selecting a quad-
rangle area on the image via the touch screen of the device.
Having performed this procedure the target object is known
and the user unfreezes the video background. In addition
we know the relative position of the corners in world coor-
dinates. The system allows for tracking the target immedi-
ately. The pose of the mobile users camera is determined
in real time which leads to a precise registration of the 3D
model with the map.

This tracker is ideally suited for interactively choosing
the target object and start tracking immediately. Conse-
quently the major advantage of the proposed tracker es-
pecially evolves in unknown environments by learning on-
line. Classically, this is the case when going outdoors where
it is not possible to collect sufficient information needed by
an off-line trained tracker. In this section, some example
screenshots of our mobile AR application are shown and
described. Figure 4(a) illustrates a top view onto the or-
thographic map overlaid with the gas and electricity pipe
network in “X-Ray Vision” to be able to see what is un-
derneath the ground. Figure 4(b) and Figure 4(c) depict an
augmented view of the mobile user from a closer distance
and different perspectives onto the map. Figure 4(d) shows
the user view from the same perspective as shown in Fig-
ure 4(c). Here the visualization style “Magic Lens” is used,
yielding a movable virtual excavation. Usually, the render-
ing style of objects inside the lens is changed and objects
are displayed differently. In this example buried utilities are
only shown inside the lens. The images in Figure 1(a) and



Figure 4. Rendering the full 3D model of underground assets at the Jakominiplatz site in X-Ray Vision. Additionally the visualization style

Magic Lens is used, yielding a movable virtual excavation.

Figure 1(b) at the front page show the AR user view from
a similar perspective using the two visualization techniques
“X-Ray Vision” and “Magic Lens” in combination.

4.2. Augmented Reality Planning in Outdoor Envi-
ronments

The major advantage of on-line learning for mobile aug-
mented reality is that for tracking planar, textured objects no
previous preparation of the target object or environment is
necessary. In this example scenario we show that the same
tracker used for the indoor planning tool is perfectly suited
to be applied in outdoor environments. The procedure the
user performs is analog to the one described previously. By
pointing the camera of the ultra-mobile PC at the facade of
the building, the user selects four points on the still video
image and can start tracking immediately. The second row
in Figure 3 depicts an outdoor user assisted by the AR plan-
ning application. Figure 5(a) illustrates a planned 3D pipe
object overlaid on the outdoor environment. The user is able
to move the pipe object with the integrated joystick to the
desired position. The object is then fixed to this position
and can be viewed from different view points. Figure 5(b)
shows a “Magic Lens” that is superimposed on the ground

next to the building faade. In contrast to model-based track-
ing approaches used in AR outdoor applications the major
advantage of the on-line learning tracker is that no textured
models of the environment are necessary.

Summarizing, the experiments illustrate the applicability
of the presented tracker for dealing with tracking planar,
textured objects in both indoor and outdoor environments.
Consequently a mobile device used for AR applications is
localized even under difficult environment conditions.

5. Conclusions and Further Work

Augmented reality benefits from applying non-invasive
natural feature tracking methods in contrast to currently
dominating marker-based approaches. Towards this aim
we presented a natural feature tracking algorithm based
on on-line boosting used for localizing a mobile computer.
We demonstrated this fast marker-less vision-based track-
ing approach within an augmented reality application. We
also built an outdoor prototype within the Vidente project.
Therefore our mobile platform is equipped with both posi-
tion and orientation sensors for outdoor tracking (i.e., real-
time kinematics GPS and inertia measurement unit). In-



(a)
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Figure 5. A planned pipe object overlaid on the outdoor environment(a) and a “Magic Lens” representing a virtual excavation that is

superimposed on the ground next to the building facade.

door AR applications already can benefit from tracking nat-
ural features on planar, textured objects. But also in out-
door environment, where conditions are more challenging,
the deployment of natural feature tracking seems applica-
ble and promising in future. For example a hybrid track-
ing approach by combining traditional outdoor trackers with
an edge-based tracker for more accurate localization was
demonstrated [24]. This vision tracking approach is based
on textured 3D models, which are more commonly avail-
able. Possible future data sources include servers for virtual
globe browsers such as Microsoft Virtual Earth® or Google
Earth*. Traditionally, outdoor environments are subjected
to continuous change. Therefore, a priori knowledge used
by e.g. model-based trackers cannot be guaranteed to be up
to date in many situations. Thus leading to deficiencies
of off-line trackers. Note, that in this context the tracker
based on on-line boosting is especially suited for perform-
ing well in such unknown outdoor environments, since new
keypoints are learned on-line. Our work represents a step
towards confluence of computer vision and graphics help-
ing to produce robust wide-area augmented realities.
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