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Abstract
To train a general person detector a huge amount of training samples is required to cope with the
variability in the persons’ appearance and all possible backgrounds. Since this data is often not
available we propose an interactive learning system, that enables an efficient training of a scene
specific person detector. For that purpose we apply a two stage approach. First, a general detector is
trained autonomously from labeled data. Later on this detector is improved and adapted to a specific
scene by user interaction. Thus, only highly valuable samples are selected and only a small number
of updates is necessary to adapt to a specific scene. In particular, for learning we apply off-line
boosting in the first stage and on-line boosting in the second stage. Since we use the same underlying
representation for both methods, we can efficiently re-train an existing classifier. In the experiments
we applied the proposed approach for different scenarios and showed that the detection results (recall
and accuracy) can be significantly improved by hand-labeling only a few novel samples.

1. Introduction

Due to the increasing number of cameras mounted for security reasons, automatic visual surveillance
systems are required to analyze the upcoming data. One important task for such automatic systems is
the detection of persons. Hence, there was a considerable interest on this topic and several approaches
have been proposed to solve this problem.

Early approaches used change detection (motion detection) to find (moving) persons. Therefore, a
background model was estimated and pixels, that could not be described by the background model
were reported as foreground pixels. These pixels were grouped into blobs and the actual detection
was performed based on blob analysis (e.g., [18]). However, these approaches have several limi-
tations (e.g., varying backgrounds, crowds of persons, etc.) and can thus not be applied to more
complex scenarios. To cope with these problems several approaches based on modeling the appear-
ance of the object have been proposed. These methods can be sub-divided into three main groups
according to the way they describe persons. For the first group of methods global image features such
as edge templates, shape features or Implicit Shape Models (e.g., [8]) are used to describe a person’s
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shape. The second group is focused on local image features such as Haar-wavelets [23], Histogram
of Gradients [1], and local covariance matrices [21] to learn the appearance. In contrast, methods of
the third group try to represent humans by their (articulated) parts (e.g., [24]).

The aim of all of these methods is to train a general person model, which should be applicable to
different scenarios and tasks. Several approaches based on machine learning algorithms have been
proposed. For that purpose, a classifier is build using a learning algorithm (e.g., AdaBoost [2]), which
is subsequently applied using a sliding window technique on all possible sub-windows of a given
image. For all of these methods a large training set is required, that captures all variability of persons
and backgrounds. But even if general classifiers are trained from a very large number of training
samples they often fail in practice. Moreover, from empirical studies (e.g., [10]) it can be seen that
acceptable recall rates are only obtained, if the number of allowed false positives is very high. Thus,
the main limitation of such approaches is that a representative dataset is needed for training. But not
all variability, especially for the negative class (i.e., possible backgrounds) can be captured during
training resulting in a low recall and an insufficient precision. To overcome these problems specific
classifiers can be applied, which are designed to solve a specific task (e.g., object detection for a
specific setup). Furthermore, adaptive classifiers using an on-line learning algorithm can be applied
(e.g., [11, 15, 25]). Thus, the system can adapt to changing environments (e.g., changing illumination
conditions) and the variations need not to be handled by the overall model. In fact, in this way the
complexity of the problem is reduced and a more efficient classifier can be trained.

Unfortunately, unsupervised on-line learning methods tend to incorporate wrong updates, which re-
duces the performance of the detector. The detector might start to drift and finally ends up in an
unreliable state [7]. In order to avoid drifting and to ensure a representative dataset Grabner et. al. [6]
proposed an interactive training method for learning a scene specific (car) detector. They start with an
empty classifier having zero knowledge and adapt it to a specific scene by taking into account scene-
specific samples, which are labeled by a human operator. Thus, only very informative labels (near the
current decision boundary) are taken into account and the label noise is minimized. However, in order
to get a well performing classifier a huge number of reliable updates (i.e., hand-labeled samples) is
needed.

The main goal in this work is to significantly reduce the human labeling effort when training such a
classifier. Therefore, we propose to train a general seed classifier by off-line boosting first, which is
later improved and adapted to a specific scene using on-line boosting. In contrast to existing scene
adaption methods, that start from a general model, we apply an on-line learning method, which allows
a direct user interaction. However, we enforce that the off-line and on-line boosting stages share the
same statistical representation. Hence, the classifier trained off-line can directly be re-trained on-line.
This tremendously reduces the amount of necessary human interaction.

The outline of the remaining paper is as follows: First, in Section 2. we summarize off-line and on-
line boosting for feature selection. Next, in Section 3. we introduce the interactive training framework
and discuss the knowledge transfer between different classifiers. Experimental evaluations are given
in Section 4. Finally, we give a conclusion and an outlook in Section 5.



2. Off-line and On-line Boosting for Feature Selection

2.1. Off-line Boosting for Feature Selection

Boosting, in general, is a widely used technique in machine learning for improving the accuracy of
any given learning algorithm (see [3] and [16] for good introduction and overview). In fact, boosting
converts a set of weak learning algorithms into a strong one. In this work, we focus on the (discrete)
AdaBoost algorithm, which has been introduced by Freund and Shapire [2]. The algorithm can be
summarized as follows: given a training set X = {〈x1, y1〉, ..., 〈xL, yL〉 | xi ∈ Rm, yi ∈ {−1,+1}}
of L samples, where xi is a sample and yi is its corresponding positive or negative label, and a weight
distribution p(x), that is initialized uniformly distributed: p(xi) = 1

L
. Then, a weak classifier h is

trained using X and p(x), which has to perform only slightly better than random guessing (i.e., the
error rate of a classifier for a binary decision task must be less than 50%). Depending on the error
e of the weak classifier, a weight α is calculated and the samples’ probability p(x) is updated. For
misclassified samples the corresponding weight is increased while for correctly classified samples
the weight is decreased. Thus, the algorithm focuses on the hard examples. The whole process
is iteratively repeated and a new weak classifier is added at each boosting iteration until a certain
stopping criterion is met. Finally, a strong classifier Hoff (x) is estimated by a linear combination of
all N trained weak classifiers:

Hoff (x) = sign

(
N∑

n=1

αnhn(x)

)
. (1)

Furthermore, boosting can be applied for feature selection [19]. The basic idea is that each feature
corresponds to a weak classifier and that boosting selects an informative subset from these features.
Thus, given a set of k possible features F = {f1, ..., fk} in each iteration n a weak hypothesis is built
from the weighted training samples. The best one forms the weak hypothesis hn, that corresponds
to the selected feature fn. The weights of the training samples are updated with respect to the error
of the chosen hypothesis. In fact, various different feature types may be applied, but similar to the
seminal work of Viola and Jones [22] in this work we use Haar-like features, which can be calculated
efficiently using integral data-structures.

2.2. On-line Boosting for Feature Selection

Contrary to off-line methods, during on-line learning each training sample is provided only once to
the learner. Thus, all steps have to be on-line and the weak classifiers have to be updated whenever a
new training sample is available. On-line updating the weak classifiers is not a problem since various
on-line learning methods exist, that may be used for generating hypotheses. The same applies for the
voting weights αn, which can easily be computed if the errors of the weak classifiers are known. The
crucial step is the computation of the weight distribution since the difficulty of a sample is not known
a priori. To overcome this problem Oza et al. [12, 13] proposed to compute the importance λ of a
sample by propagating it through the set of weak classifiers. In fact, λ is increased proportional to the
error e of the weak classifier if the sample is misclassified and decreased otherwise.

Since the approach of Oza can not directly be used for feature selection Grabner and Bischof [4]
introduced selectors and performed on-line boosting on these selectors and not directly on the weak
classifiers. A selector hsel

n (x) can be considered a set of M weak classifiers {h1(x), . . . , hM(x)}, that



are related to a subset of features Fn = {f1, . . . , fM} ∈ F , where F is the full feature pool. At each
time the selector hsel

n (x) selects the best weak hypothesis

hsel(x) = arg min
m

e
(
hweak

m (x)
)

(2)

according to the estimated training error

ê =
λwrong

λwrong + λcorr

, (3)

where λcorr and λwrong are the importance weights of the samples seen so far, that were classified
correctly and incorrectly, respectively. The work-flow of the on-line boosting for feature selection can
be described as follows: A fixed number ofN selectors hsel

1 , .., hsel
N is initialized with random features.

The selectors are updated whenever as a new training sample 〈x, y〉 is available and the weak classifier
with the smallest estimated error is selected. Finally, the weight αn of the n-th selector hsel

n is updated
and the importance λn is passed to the next selector hsel

n+1 and a strong classifier is computed by a
linear combination of N selectors:

Hon(x) = sign

(
N∑

n=1

αnh
sel
n (x)

)
. (4)

Contrary to the off-line version, an on-line classifier is available at any time of the training process.

3. Learning Framework

When learning a classifier the samples are usually drawn randomly from a fixed set (i.i.d.). The set
represents the underlying distributions of positive and negative samples. Hence, a great number of
samples is needed. Such a sampling strategy, which is often referred to as passive learning [9], would
result in a slow convergency.

3.1. InterActive Learning

To overcome these problems, an adaptive learning algorithm, taking advantage of the ideas of active
learning (e.g., [9,20,26]), can be applied. In general, an active learner can be considered as a quintuple
(C,Q, S,L,U) [9], where C is a classifier, Q is a query function, S is a supervisor (teacher), and L
and U are a set of labeled and unlabeled data, respectively. First, an initial classifier C0 is trained
from the labeled set L. Given a classifier Ct−1, the query function Q selects the most informative
unlabeled samples from U and the supervisor S is requested to label them. Using the thus labeled
samples the current classifier is re-trained obtaining a new classifierCt. This procedure is summarized
in Algorithm 1.

When considering an adaptive system we can start from a small set of labeled data L. But usually the
unlabeled data U is not available in advance. In our case, when learning a person detector, we can
define all patches in the processed input images as unlabeled data U. Thus, the first crucial point is to
define a suitable query function Q, which selects the most valuable samples. It has been shown [14]
that it is more effective to sample the current estimate of the decision boundary than the unknown
true boundary. Therefore, the most valuable samples are exactly those, that were misclassified by the
current classifier. Hence, the algorithm is focused on the hard samples and the number of required
training samples can be considerably reduced. Considering the person detection task the misclassified
samples are the detected false positives and the missed true positives.



Algorithm 1 Active Learning

Input: unlabeled samples U, classifier Ct−1

Output: classifier Ct

1: while teacher S can label samples uj do
2: Apply Ct−1 to all samples uj

3: Let Q find the m most informative samples uq

4: Let teacher S assign labels yq to samples uq

5: Re-train classifier: Ct

6: end while

The key idea of this paper is that a human operator, who is supported by the system, undertakes the
task of the query function Q and the teacher S. Thus, it can be assumed that only valuable samples
are selected and that (almost) all labels are correct. This assures a fast convergency, i.e., only a small
number of updates is necessary. Consequently this reduces the human effort. In practice, the current
classifier Ct−1 is applied on the current image and the detection results are displayed by the system.
Based on this output the human operator labels the informative samples. In fact, these are the reported
false positives and the missed true positives. This fully supervised and interactive process is iterated
until the desired performance (i.e., recall and accuracy) is reached. The interactive training process is
summarized more formally in Algorithm 2.

Algorithm 2 InterActive Learning
1: Initialize classifier C0

2: while non-stop-criteria do
3: Evaluate current classifier Ct−1 and display results
4: Manually label “good” samples uq (positive and negative)
5: Re-train classifier: Ct

6: end while

3.2. Including Prior Knowledge

To reduce the human effort, i.e., the number of manually labeled samples, we investigate how we
can benefit from the incorporation of prior knowledge when learning an initial classifier. Assuming
that the prior knowledge is given as an off-line classifier, the goal is to transfer this knowledge to an
on-line classifier, which can then be improved. This is depicted in Figure 3.2.

Classifier Transfer
The simplest way to make use of prior knowledge is to transfer pre-learned knowledge (prior) via
labels. Precisely, the on-line classifier is updated with samples x of the novel scene, where the labels
are provided by the off-line classifier: 〈x, Hoff (x)〉. More sophisticated ways of knowledge transfer
may be applied. For instance similar to [17] we can transfer the information from an off-line classifier
Hoff to an on-line classifier Hon by applying Hoff as first weak classifier. In fact, the succeeding
weak classifiers in the on-line ensemble compensate the errors of the prior off-line classifier.



(a) knowledge transfer (b) our approach: direct retraining

Figure 1. Knowledge transfer: (a) a new on-line classifier is build using the information, that is already captured
by an off-line classifier; (b) proposed approach – an off-line trained classifier is directly re-trained.

As a drawback, if the off-line classifier has a high error (i.e., the two distributions are very “different”)
the complexity of the on-line classifier has to be large . This, however, yields to the common problem
that many training samples have to be provided again.

Direct Re-training
To avoid the drawbacks of the previously discussed methods for knowledge transfer and to further
reduce the human effort for re-training, in this work, we propose to directly update the off-line trained
classifier in an on-line manner. For that purpose, we have to ensure that all statistics, that are necessary
for on-line updating, are stored during the off-line training phase. This can be done straightforwardly
for all components:

Weak classifier: In order to build a weak hypothesis hn : X → {−1,+1} corresponding to an
image feature fn we apply a learning algorithm. Precisely, we estimate the distributions
P (y = 1|fn(x)) and P (y = −1|fn(x)) for positive and negative samples, respectively,
and apply a Bayesian decision rule to estimate hn. Assuming that positive and negative
feature values follow Gaussian distributions, we can calculate the mean and the variance
from all off-line samples. These parameters can then easily be adjusted during the on-line
learning stage [5].

Errors: The error of the weak classifier is used to select the best weak classifier within a
selector to calculate the voting weight α and to update the importance λ. In the off-line
case the error depends on the weights pi of the training samples, that were classified
correctly and incorrectly. These values have to be saved as λcorr and λwrong, which can
then be updated by the importance λ in the on-line case. Thus, by using Eq. (3) the
estimated error can be re-calculated.

These modifications of the off-line learning process allow us to on-line re-train an off-line trained
classifier later on. Thus, we can retain the information captured during the off-line training and we
can still adapt an existing classifier to a new specific scene.



4. Experimental Evaluation

The purpose of the experiments is twofold. First, we want to show that using the proposed interactive
learning strategy efficiently a person detector can be trained and, second, that by including prior
knowledge, i.e., by using a pre-trained classifier, the learning process can be speeded up. In fact,
we show that an existing general classifier can be adapted to a specific scene. To illustrate this we
first trained a general off-line classifier using publicly available hand-labeled samples and then re-
trained this classifier for specific scenes later on. For evaluation purposes we compared the detection
results using the overlap-criterion with the defined ground-truths (required overlap 50%), where we
used precision, recall, and F-measure (see e.g., [7]) as evaluation criteria. To allow a fair comparison
we used the same complexity for all classifiers (including the one trained off-line). In particular, we
applied 50 selectors, each holding a set of 250 weak classifiers corresponding to a feature.

4.1. Benchmark Data

The CoffeeCam dataset shows a corridor in a public building near to a coffee dispenser. Hence, we
could capture various representative real-world scenarios: walking people, people standing around
while waiting for their coffee, or people building small crowds while drinking coffee. For evaluation
purposes we generated a training sequence containing 1200 frames and a challenging independent
test set (containing groups of persons, persons partially occluding each other, and persons walking
in different directions) and a corresponding ground-truth. In total the test sequence consists of 300
frames and contains 224 persons.

The Caviar2 dataset contains sequences showing a corridor in a shopping mall from two different
views. For our experiments we have selected and adapted one typical (more complex) sequence
showing the frontal view (ShopAssistant2cor). The frame-rate of the original sequence was reduced
and the images were converted to gray-scale. In total the test sequence consists of 144 frames and con-
tains 364 persons. The provided ground-truth, which also contains partial persons (hands, head, etc.),
was adapted such that only detectable persons are included. For training an independent sequence of
1200 frames, compiled from different sequences, was used.

The PETS 20063 dataset shows the concourse of a train station from four different views. For our
experiments we have selected sequences from two of the four views (frontal view/Camera 3 and side
view/Camera 4), which are different in view angle, size, and geometry. For evaluation Dataset S7
(Take 6-B), Camera 3 (PETS3) and Dataset S5 (Take 1-G), Camera 4 (PETS4) were adapted, i.e., the
frame-rate was reduced and a ground-truth was estimated. Thus, the test sequence PETS3 consists
of 214 frames and contains 158 persons, whereas the test sequence PETS4 consists of 308 frames
and contains 1714 persons in total. In addition, independent test sequences were created, containing
approximative 1000 frames, respectively.

4.2. Off-line Classifier

We trained an off-line classifier using boosting [22] with the data provided by Dalal and Triggs [1]4.
In fact, we used 1000 positive samples. In addition, the negative samples were bootstrapped from a
set of many random images, that do not contain persons. This classifier was then applied to different

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1, (February 13, 2008)
3http://www.pets2006.net, (February 13, 2008)
4http://pascal.inrialpes.fr/soft/olt/, (February 13, 2008)



test sequences. The results are summarized in Table 1. Since the trained classifier includes no scene
specific information it has to cope with a “general” learning task and hence the precision is quite low
even for simple sequences such as CoffeeCam. Thus, such a classifier can not be applied for practical
applications. Moreover, it can be seen that the classifier fails completely for the PETS3 dataset. This
is not surprising since the classifier was trained from frontal and back views only whereas the test
sequence contains mainly side views of persons.

recall precision F-measure
CoffeeCam 0.78 0.90 0.84

Caviar 0.62 0.25 0.36
PETS3 0.27 0.06 0.10
PETS4 0.57 0.18 0.27

Table 1. Performance of off-line classifier.

4.3. On-line Classifier without prior Knowledge

For this experiment we trained a scene-specific on-line classifier from scratch using the interactive
method described in Section 3.1. We randomly initialized an on-line classifier and manually per-
formed updates using the graphical user interface. The results are summarized in Table 2. It can be
seen that by scene-specific on-line learning the performance was dramatically increased. But since
no prior information is used a huge amount of human interaction (labeling effort) is necessary to train
a proper classifier. Especially, for complex scenarios such as PETS4. Nevertheless, compared to the
off-line case the number of required labeled samples, which corresponds to the number of positive
and negative updates (no. updates), is quite small!

recall precision F-measure no. updates
CoffeeCam 0.93 0.80 0.86 139

Caviar 0.75 0.65 0.70 366
PETS3 0.82 0.82 0.82 139
PETS4 0.75 0.79 0.77 724

Table 2. Performance of interactive on-line classifier – without using prior knowledge.

4.4. Re-trained On-line Classifier with Prior Knowledge

To further reduce the hand labeling effort we took into account the knowledge already available by
the off-line classifier. For that purpose we directly re-trained this classifier as proposed in Section 3.2.

The results are illustrated in Table 3. As can be seen the already acquired information can directly
be used and the manual effort is dramatically reduced. In fact, compared to the classifier trained from
scratch the number of required updates was reduced to approximative a third, whereas the perfor-
mance is comparable or even better. The only exception is PETS3. Since this scene has a slightly
different viewpoint, especially a lot of new positive samples are needed, that can not be provided
by the pre-trained classifier. Thus, for both cases, with or without using prior knowledge, the same
human effort is necessary.



recall precision F-measure no. updates
CoffeeCam 0.91 0.76 0.83 44

Caviar 0.79 0.65 0.72 93
PETS3 0.92 0.88 0.90 142
PETS4 0.81 0.88 0.85 221

Table 3. Performance of interactive on-line classifier – using prior knowledge.

Finally, we show some qualitative results of the proposed method. Figure 2(a) shows original detec-
tions, that were obtained by the off-line classifier whereas Figure 2(b) shows the final results, that
were obtained by improving the classifier using the interactive training module. It clearly can be seen
that the results obtained from re-trained classifier are much better!

(a)

(b)

Figure 2. Person detection results: (a) off-line and (b) on-line improved by the proposed method for Caviar, PETS3,
and PETS4, respectively.

An outcome of our experiments is that although classifiers can be trained from scratch for a specific
scene using on-line boosting, the amount of human hand labeling effort can significantly be reduced
by incorporating prior knowledge. In fact, a better (off-line) seed classifier reduces the amount of
required interaction.

5. Conclusion and Outlook

In this paper we proposed an interactive method for learning a scene specific person detector. The
main idea is that the current detector provides labels for patches extracted from the specific scene.
These patches are verified by a human operator and can be used for an on-line update of the current
classifier. In fact, the learning process can be started from scratch. To reduce the training time,
i.e., the number of necessary updates, a general seed classifier is trained off-line first, that is then



improved via on-line learning. In particular, we used off-line and on-line boosting for that purpose.
Both learning algorithms are based on the same representation. Thus, an off-line trained classifier can
directly be re-trained in an on-line manner. In the experiments we could show that the performance of
a pre-trained off-line classifier can be significantly improved. This was demonstrated for two publicly
available benchmark datasets, i.e., Caviar and PETS 2006. Moreover, we could show that due to the
pre-trained off-line prior the human effort can be reduced to a minimum. Future work will include
the extension of the proposed framework for semi-autonomous annotation of new data, where the
off-line prior provides suggestions for possible labels, which in fact, might also be used for updating
the existing classifier.
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