
Aerial Object Tracking from an Airborne Platform*

Andreas Nussberger1, Helmut Grabner1 and Luc Van Gool1

Abstract— The integration of drones into the civil airspace
is still an unresolved problem. In this paper we present an
experimental Sense and Avoid system integrated into an aircraft
to detect and track other aerial objects with electro-optical
sensors. The system is based on a custom aircraft nose-pod
with two integrated cameras and several additional sensors.
First test flights were successfully completed where data from
artificial collision scenarios executed by two aircraft were
recorded. We give an overview of the recorded dataset and
show the challenges to be faced with processing videos from a
mobile airborne platform in a mountainous area. The proposed
tracking framework is based on measurements from multiple
detectors fused onto a virtual sphere centered at the aircraft
position. To reduce false tracks from ground clutter, clouds
or dirt on the lens, a hierarchical multi-layer filter pipeline is
applied. The aerial object tracking framework is evaluated on
various scenarios from our challenging dataset. We show that
aerial objects are successfully detected and tracked at large
distances, even in front of terrain.

I. INTRODUCTION

Over the past decade the market for Unmanned Aerial

Vehicles (UAVs) is increasing continuously. However an

accurate prediction of developments, especially in the civil

market, is currently very difficult because there is one major

challenge remaining: the integration of UAVs into the civil

airspace. The civil airspace is a heavily regulated area with

strict rules to ensure a safe operation for all participants. A

simplified schematic overview of the available safety layers

is shown in Figure 1. First there are procedures that every

airspace user has to follow. For a controlled airspace there

is also air traffic management available which organizes all

participants in a given area. If we look at a closer area around

a given aircraft there are transponder based technologies

available to make an aircraft visible to others. Up to now not

every aerial object is forced to include such a transponder
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Fig. 1. Schematic overview of airspace safety layers. In this paper we
focus on the See and Avoid part to detect aerial objects with cameras.

(a) Aircraft with sensor nose-pod (b) Example camera image

Fig. 2. The aircraft shown on the left was used to record a dataset
containing image and meta data of real aircraft encounter scenarios.

based device. Especially gliders, paragliders and balloons are

usually not equipped with such a device. Therefore the last

safety layer is always the pilot himself who has to look

outside and search for other aerial objects. This principle

is called ”See and Avoid”.

If UAVs shall be integrated into this complex environment

they have to comply with the existing standards and regula-

tions. On the other hand these standards and regulations have

to be extended to correctly handle the differences between

a directly piloted aircraft and a remotely operated aircraft.

Because there are no standards available yet, there is a large

number of working groups and special committees working

on the integration of UAVs into the civil airspace (e.g. ASTM

F38, EUROCAE WG73, ICAO UASSG, RTCA SC-228).

Despite the ongoing activities for establishing the required

regulations there is also one big technical challenge remain-

ing: replacing the ”See and Avoid” capability of the pilot

by a technical system. This research area is also known as

”Sense and Avoid” or ”Detect and Avoid”. As early results of

different working groups have shown [1]–[3], a Sense and

Avoid system shall provide an ”equivalent level of safety

compared to a human pilot”.

First research activities with focus on Sense and Avoid

have already started more than ten years ago within the

NASA ERAST project [4] using a RADAR to detect other

aircraft during the test flights. A similar project was started

by the DLR in Germany [5] also based on a RADAR sensor.

In parallel the Airforce Research Lab performed initial flight

tests to detect other aircraft by electro-optical (EO) sensors

based on an FPGA accelerated optical flow algorithm [6].

In 2009, the European Defense Agency started the ”Mid Air

Collision Avoidance System” (MIDCAS) project to develop

an experimental Sense and Avoid system based on EO,

infrared and RADAR sensors.
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(a) Camera field of view (b) Sensor nose-pod

Fig. 3. Overview of the camera installation in the aircraft sensor nose-pod.
The given camera orientation was chosen to fully cover slightly more than
half of the proposed field of view for a Sense and Avoid system (horizontally
±110

◦, see [1]), which is sufficient to simulate all relevant scenarios.

A popular way of detecting aerial objects within camera

images is to use morphological filters for the sky region [7]–

[9]. First closed-loop passive Sense and Avoid test flights

based on morphological filters were demonstrated using a

GPU accelerated real-time implementation [10]. There also

exist other solutions e.g. based on a RADAR as primary

sensor which provides an initial estimate of the aerial object

angular position and a camera to increase the angular accu-

racy. The RADAR measurement is used to initialize a search

window within the camera image where an edge detection

algorithm is used to identify the aircraft [11].

In this paper we present an experimental Sense and Avoid

system (see Figure 2) based on multiple sensors. In contrast

to recent activities in obstacle avoidance with micro aerial

vehicles [12], [13] we focus on detecting aerial objects

using EO sensors (two cameras) at large distances and

track them to decide if a given object is on a collision

path. The cameras are a key component of the system

because many smaller airspace users are not equipped with

a transponder based device and some gliders, para-gliders or

balloons will be hard to detect by a RADAR within ground

clutter. The presented image processing pipeline is able to

robustly detect aerial objects in the sky as well as in front of

terrain. Measurements from multiple detectors and cameras

are integrated into a sensor-independent spherical tracking

framework with a multi-layer filter pipeline to remove false

detections from ground clutter, clouds or dirt on the lens.

We evaluate the proposed aerial object tracking framework

on various scenarios from our challenging dataset recorded

in the mountainous area of Switzerland. Experiments show

that the traffic aircraft is successfully detected and tracked

at large distances (average initial track distance greater than

1500 m) with only few pixels visible, even in front of terrain.

The structure of this paper is as follows. Section II

describes the experimental system used to record the dataset

containing various aircraft encounter scenarios. Section III

gives an overview of the introduced processing pipeline to

detect and track aerial objects. In Section IV, experimental

results are presented, and in Section V we conclude the paper

and discuss future work.
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Fig. 4. The exposure controller adjusts the camera exposure time and the
lens aperture value. Correct exposure is determined by evaluating the image
histogram.

II. EXPERIMENTAL SYSTEM

In order to develop and measure the performance of

a Sense and Avoid system, example data of real aircraft

encounter scenarios is required. Therefore an experimental

Sense and Avoid system was built up consisting of a data

logger in the back of a Diamond DA42 aircraft and a custom

nose-pod (see Figure 3(b)) containing the following sensors:

an ADS-B1 receiver and a FLARM2 device to detect so

called ”cooperative traffic” which is actively transmitting its

own position and velocity. On the other hand aerial objects

which do not actively share their own position are called

”non-cooperative traffic”. To detect these types of airspace

users (e.g. para-gliders or balloons) we use two cameras.

Additionally an inertial measurement unit (IMU) and a GPS

receiver are also integrated.

A. Hardware

The built-in cameras are based on an 8 mega pixel sensor

with a bit depth of 8-bit or 12-bit and 20 fps or 10 fps

respectively. Together with the installed lens each camera

provides a field of view (FOV) of 65◦ × 51◦, which results

in an angular resolution of about 0.02◦. For comparison,

the human eye usually provides an angular resolution of

approximately 0.01◦, but only at 2◦ around the center of

fixation [14]. The cameras have a global shutter which

is synchronized across the cameras by an external trigger

signal. A schematic overview of the camera installation in

the aircraft nose-pod is shown in Figure 3(a).

Exposure control: having a robust exposure controller

which correctly handles the huge range of different lighting

conditions (e.g. haze, dark terrain, direct sunlight, etc.) is

another important part of the system. Therefore a custom

controller according to Figure 4 was implemented to dynam-

ically adjust the exposure time (exp) and the lens aperture

(ape) values based on the mean image intensity as reference.

Special care had to be taken for very bright situations with

1Automatic Dependent Surveillance Broadcast is a transponder based
technology which is transmitting the own GPS position and velocity every
second to other airspace users. Depending on the transponder power the
maximum range can exceed 100 km.

2Flight Alarm is a proprietary, non certified traffic collision warning
system. The maximum range is typically in between 3-5 km. Even though
it is not a certified aviation product most of the gliders in countries around
the Alps in Europe are equipped with such a device.



Fig. 5. Different lighting conditions extracted from the dataset.

e.g. direct sunlight to make sure we do not lose details in the

dark parts of the image. On the other hand for example if

only terrain is visible in the image, a trade-off has to be made

between lighting up the image and motion blur introduced

by the ego motion. Therefore the controller reference value

was automatically adjusted based on the number of pixels

above or below a given intensity value. The final parameter

tuning was performed during pre-test-flights.

Lighting conditions: example images of various lighting

conditions in the dataset are shown in Figure 5. The top

row shows examples of common situations found in most

of the recorded scenarios. The bottom row contains some

challenging conditions such as reflections from haze, water,

direct sunlight or the lens itself.

During the test flights all sensors produced continuously

about 300 MB/s of data which was handled by a custom

logging software to assure an accurate time handling in

between the different sources. To enable the pilots to focus

on the scenarios, the system was supervised and controlled

from a ground control station.

B. Dataset

The main focus of a Sense and Avoid system is to detect

and successfully avoid aerial objects on a potential collision

path. To simulate this scenario two different aircraft were

Own-ship

Traffic

(a) Scenario: head-on

Own-ship

Traffic

(b) Scenario: crossing from the right

Fig. 6. These base scenarios were used as a reference for all test-flights.

Fig. 7. Comparison of aircraft patches (100 x 100 pixel) from a Pilatus
PC-6 at different distances: 3.0 km, 1.5 km and 1.0 km. The top row shows
a crossing from the right and the bottom row a head-on scenario.

used to fly artificial pre-defined scenarios on a collision

course. For flight safety a minimal vertical separation was re-

spected. The average aircraft velocity was around 100 knots

resulting in closing speeds up to 200 knots. All scenarios

were derived from one of the base scenarios shown in

Figure 6, where the aircraft with the sensor nose-pod (own-

ship) is shown at the bottom and the traffic aircraft (a Pilatus

PC-6) at the top.

The standard head-on scenario was used to simulate a

direct collision where no translational motion of the traffic

aircraft is visible in the camera reference frame and only

the size of the shape is increasing. The crossing from the

right is the more general case where two aircraft are on a

constant angle collision course, another dangerous situation

every pilot is aware of. By modifying the closing angle

and speed in between the two aircraft various situations

were recorded, e.g. traversal of both cameras by the traffic

aircraft. Other applied variations include for example a wing-

rock of the own-ship to simulate massive ego motion or

an avoid maneuver of one of the aircraft or even both

of them. To include a representative overview of available

lighting conditions, all scenarios were repeated with different

orientations with respect to the sun and in front of terrain or

with the sky as background.

The final recorded dataset includes more than 40 scenarios

and 5 hours of video and meta data. This includes the

ADS-B, FLARM, IMU, GPS and EO sensors of the own-ship

which were recorded for each separate scenario. In addition

the ground truth of the traffic aircraft was recorded using a

differential GPS (D-GPS).

Distance comparison: small equally sized patches of the

traffic aircraft at fixed distance intervals are shown in Fig-

ure 7. The top row is taken from a crossing from the right

scenario where the traffic was flying at a slightly higher

altitude than the own-ship. In the bottom row, cutouts of

a head-on scenario are shown. These scenarios are usually

more difficult because the visible cross-section of the traffic

aircraft is minimal.



Fig. 8. Comparison of aircraft patches (100 x 100 pixel) from a head-
on scenario in front of a mountain at 8-bit (top) and 12-bit (bottom) and
different distances: 3.0 km, 1.5 km and 1.0 km.

Bit depth comparison: a head-on scenario where the traffic

aircraft is coming closer in front of a mountain, while the

sun was simultaneously visible in one of the camera edges,

is shown in Figure 8. We show a direct comparison between

image data available in 8-bit and 12-bit. The upper row shows

the 8-bit equivalents at different distances while the lower

row shows the corresponding 12-bit image. For visualization

purposes the original 12-bit image was requantized into an

8-bit band. It is obvious that especially for such challenging

lighting conditions a higher bit depth provides significant

advantages.

III. DETECTION AND TRACKING OF

AERIAL OBJECTS

This section focuses on the image processing framework

proposed for the detection and tracking of aerial objects from

an aircraft. We use a tracking by detection approach with

the main visual steps shown at the top of Figure 9. First, we

estimate the horizon line to separate each frame into a sky

and a terrain region. Second, different detectors are applied

based on the estimated horizon. Third, the detections from all

detectors and cameras are converted to sensor independent

measurements and fused for the tracker. The fourth step

Camera
Detection

Horizon

Estimation

Detection

Fusion
Tracker

GPS

IMU

Object

DTM

Fig. 9. The image processing pipeline with the main visual steps at the top.
Additional meta information from a GPS receiver, an inertial measurement
unit (IMU) and a digital terrain model (DTM) is shown by dotted lines.
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z

Fig. 10. We calculate an initial horizon estimate based on the the aircraft
altitude, attitude and the assumption of the earth being a sphere with constant
radius.

includes the spherical tracker and the track verification

steps. Additional meta information such as GPS or IMU

measurements and a digital terrain model (DTM) which are

used throughout the processing pipeline are visualized by

dotted lines. The detailed explanation of the different blocks

is part of the following subsections.

A. Horizon Estimation based on Aircraft Attitude

The horizon estimation is a multi-step procedure required

by the aerial object detectors (see Section III-B) where we

use different detectors and parameters for the sky and terrain

parts of the images.

Initial estimate: first we calculate an initial estimate based

on the aircraft position and attitude according to Figure 10.

The aircraft attitude is mapped from the aircraft reference

frame to the camera reference frame using the extrinsic

camera calibration. The horizon pitch angle αh is given by

the tangent from the aircraft to the surface of the earth

and the z-axis of the camera reference frame. With the

assumption of the earth being a sphere with radius re we

can derive αh from the aircraft altitude ha and the camera

pitch angle ψc, see equations (1) to (4).

dh =
√

(re + ha)2 − r2e (1)

γe = arccos

(

re

re + ha

)

(2)

dp = tan(γe) · (re + ha) (3)

αh = arccos

(

dh

dp

)

− ψc (4)

The horizon roll angle in the camera reference frame is

directly given by the camera roll angle. The accuracy of

the estimated horizon line is primarily affected by the an-

gular accuracy of the IMU. When flying at high altitude

or above nearly flat terrain this initial estimate already

provides reasonable results. At lower altitudes and especially

in mountainous terrain a refinement is required.

Refinement: in a second step we calculate a refinement

based on the initial estimate. Because this initial estimate



(a) Initial horizon estimate based on aircraft altitude and attitude

(b) Refined horizon using edge detection and dynamic programming

Fig. 11. Example images for the horizon estimation steps.

indicates the position of the horizon on flat terrain, we just

allow a refinement above the existing estimate to account for

protruding mountains. The refinement is based on edges and

a dynamic programming algorithm [15]. Example images are

shown in Figure 11.

There are currently still issues with scenarios where we

have heavily textured clouds at the horizon. Because we

make sure by our initial estimate that the horizon is not too

low, the precision of the later refinement is not critical. It

is usually not an issue if we apply an aerial object detector

tuned for terrain background to a sky region. In contrast

applying a detector optimized for sky regions to terrain will

result in lots of false detections. To further improve the

robustness additional cues (e.g. intensity or gradients [16])

could be integrated into the estimation process.

B. Object Detection

Our processing framework allows to include multiple

independent detectors which provide measurements for the

tracker. The main challenges are the very small size of the

aerial objects and the ego-motion of the own-ship. Currently

we use the following two detectors.

Morphological operations: morphological close-minus-

open filters are widely used to detect aerial objects in a

Sense and Avoid environment [8], [10] because they provide

reasonable results at relatively low computational costs. A

main issue of this approach is the limitation to the sky region

of an image. When applying the morphological filters to an

area in the image with terrain as background they would only

provide a massive amount of false detections.

Image differencing: to extend the aerial object detection to

image areas with terrain as background, a common scenario

when flying at low altitude in a mountainous area, we use

an image differencing pipeline [17]. First we extract key-

points from every image and search for matches in between

consecutive frames. Based on these matches we estimate the

transformation from the old frame to the current one. By

warping and subtracting the old from the current we get

the detection candidates. Based on the estimated horizon we

azi

ele

ω

φ

N

E

D

Fig. 12. Virtual tracking sphere fixed to a north-east-down reference frame
at the global aircraft position.

apply different thresholds for the sky and terrain region of the

image in the following binarization step. The final detections

are extracted by labeling the connected components. Using

different thresholds for the sky and terrain part usually

enables us to achieve larger detection distances for the sky

region.

In contrast to the morphological filters the image differ-

encing allows us to detect aerial objects not only above the

horizon but also in front of terrain. However even if we use

different thresholds for the sky and terrain parts we typically

achieve larger detection distances with the morphological

detector for the sky region.

C. Detection Fusion

Another key contribution of our tracking framework is

the decoupling of detections and tracks from the sensor

reference frame. We propose a virtual sphere around the

aircraft as shown in Figure 12. The sphere is independent

of aircraft attitude and fixed to a north-east-down reference

frame centered at the global aircraft position.

All detectors provide their measurements in the camera

pixel reference frame. In the Detection Fusion step, the

raw detections from every single camera and detector are

transformed from pixel coordinates to spherical azimuth and

elevation angles and fused to measurements for the tracker

as points on the surface of the virtual sphere. The pixel

values are first converted to azimuth and elevation angles in

the camera reference frame using a standard camera pinhole

model accounting for radial and tangential lens distortions

[18]–[20]. The second step includes the transformation from

camera reference frame to the tracking sphere by using the

camera attitude given by the aircraft IMU. In the last step,

detections from overlapping cameras or multiple detectors

are fused based on their position and size.

FOV restriction: according to [1] a Sense and Avoid

system shall provide a vertical FOV of ±15◦. Therefore we

discard detections outside the recommended area.

This architecture allows us to easily integrate additional

sensors to the system by a proper external calibration with
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Fused Detections

Ground Clutter Filter Valid Tracks

EKF Tracker

Fig. 13. False detection filter steps for track verification.

respect to the tracking sphere, e.g. additional cameras with

different resolutions or wavelengths. In addition we do not

have to take special care for overlapping or non-overlapping

camera FOVs.

D. Tracking and Verification

As described in the previous section we project all detec-

tions to a global virtual sphere around the aircraft position

shown in Figure 12. For the aerial object tracking we have

implemented a constant angular velocity Extended Kalman

Filter (EKF) with the states shown in equation (5) and

the non-linear update equation (6). The azimuth (azi) and

elevation (ele) angles specify the global track position on

the surface of the unit sphere. The track velocity is given

by the track heading φ and the angular velocity ω defined

as the track velocity on the surface of the sphere divided by

the sphere radius. Changes in track velocity or heading are

handled by the corresponding process noise νφ and νω .

xekf = [azi, ele, φ, ω]⊺ (5)

xekf (t+ 1) = xekf (t) + ∆t ·









cos(φ) · ω + νazi
sin(φ) · ω + νele

νφ
νω









(6)

Tuning the detectors requires making a trade-off between

detection range and false-detection rate. With increasing

distance the objects get smaller, visually less distinctive and

represented by fewer pixels. To achieve a useful detection

range we have to take into account a large amount of false

positives. To separate the aerial objects from clutter we

propose the multi-layer filter architecture shown in Figure 13.

EKF Tracker: in a first step we update the tracks in our

EKF filter with new detections. If a detection is not assigned

to an existing track, a new track is initialized. A detection is

successfully assigned to an existing track if it lies within

a given area defined by the predicted track position and

the corresponding covariances. All created tracks undergo a

verification phase for the next couple of frames. During this

time additional measurements are required and the candidate

track has to successfully pass all the additional filter steps

to be declared valid. For all tracks we keep a history of

their previous pixel and angular positions which will be used

throughout the filter steps.

Static object filter: in the second step, we filter static

objects which are typically created due to lens pollution,

clouds or if parts of the own aircraft are visible in the

t1 t2 t3

Own-ship
Traffic

(a) Schematic overview of a valid aircraft trajectory projected to the
surface of the DTM over multiple time steps.

t1 t2 t3

Own-ship Ground clutter

(b) Schematic overview of the projection of ground clutter to the surface
of the DTM over multiple time steps.

Fig. 14. Comparison of an aircraft trajectory and ground clutter projected
to the surface of the digital terrain model.

camera. Note that static can refer to ’constant pixel position’

or ’constant position on the virtual sphere’. In our dataset

e.g. the pitot probe from the right wing is partially visible

in the right camera. Due to vibrations and minor flapping of

the wings the pitot probe is an ideal candidate for the image

differencing detector. Dirt on the lens is usually less critical

because it is heavily out of focus. Due to our virtual tracking

sphere and the ego motion of the aircraft we are able to filter

these static objects by analyzing the history of a track’s pixel

positions and compare them with the global track motion

in azimuth and elevation angles. To avoid discarding aerial

objects on a constant angle collision course a candidate track

is only removed if its size is constant over time.

Ground clutter filter: the third step is to reduce the

amount of ground clutter generated by the image differencing

detector, typically a result of stationary objects on the ground

changing their appearance when flying over at low altitude.

To separate ground clutter from a valid aerial object we

project the candidate track history to the surface of a DTM.

In Figure 14 we show a comparison between the projection of

a valid aircraft trajectory and the projection of a false track

due to a static object on the ground to the surface of the

DTM. Using the DTM to analyze the motion of a candidate

track on the terrain surface allows us to successfully remove

false tracks from stationary objects on the ground.

Valid tracks: finally if a new candidate track passes all the

proposed filter steps it will be declared as ”valid”, but even

a valid track has to continuously pass all the filter steps.

IV. EXPERIMENTS

In this section we focus on the evaluation of the processing

pipeline based on our challenging dataset. First, we give an

overview of the results across different scenarios. Second, we

present a detailed analysis of our filter architecture to explain

the challenges occurring when tracking aerial objects from

an airborne platform.



TABLE I

COMPARISON OF FIRST DETECTION AND VALID TRACK DISTANCES WITH THE CORRESPONDING TIME TO COLLISION

Scenario details First detection Valid track False tracks

Type Background Duration Distance TTC Distance TTC Num. tmax

A Head-on Sky 28 s 2780 m 26.2 s 1874 m 17.6 s 1 1 s

B Head-on Sky 27 s 2649 m 24.0 s 1622 m 14.5 s 0 -

C Head-on Terrain 25 s 1350 m 11.6 s 980 m 7.8 s 0 -

D Head-on Terrain 24 s 2810 m 22.4 s 1116 m 9.0 s 11 12 s

E Crossing Sky 37 s 2960 m 36.8 s 2830 m 35.3 s 2 2 s

F Crossing Sky 48 s 2977 m 48.0 s 2588 m 42.2 s 0 -

G Crossing Sky 31 s 2833 m 29.5 s 1831 m 17.7 s 2 2 s

H Crossing Terrain 31 s 2370 m 23.3 s 1550 m 14.2 s 18 8 s

I Crossing Terrain 33 s 2767 m 30.2 s 1489 m 14.0 s 2 5 s

K Crossing Terrain 43 s 2596 m 37.8 s 1593 m 23.4 s 4 4 s

Average - - 33 s 2609 m 29 s 1747 m 19.6 s 4 3.4 s

A. Evaluation Criteria

The evaluation of our processing pipeline is based on the

scenarios shown in Figure 16. For each scenario we analyze

the first detection by one of the detectors and the moment the

track is declared valid. As evaluation criteria we chose the

remaining distance in between the own-ship and the traffic

aircraft and the time to collision (TTC).

Distance: the remaining distance in between the two

aircraft is defined as the euclidean distance between the GPS

position of the own-ship and the D-GPS ground truth of the

traffic aircraft.

Time to collision: for the calculation of the TTC we define

the closest point of approach (CPA) as the position of the

own-ship at the time where the distance to the traffic aircraft

is minimal. With the assumption of a constant velocity the

TTC is given by the distance from the current position to the

CPA divided by the current speed.

In addition we show the total number of false tracks for

each scenario. To allow a comparison between the track alive

time of the traffic aircraft and the number of available false

tracks we show the maximum alive time of all false tracks

(tmax). This value can directly be compared with the TTC

of a valid track, because once a track is declared valid, we

usually do not lose it again due to the continuously increasing

size of the traffic aircraft, if it is on a collision path.

B. Results

All of the chosen scenarios start at an initial distance of

3 km with the traffic aircraft already within the FOV of one of

the cameras and end at the CPA. An overview of the results

achieved across various scenarios from our dataset is shown

in Table I. The scenario type defines the corresponding base

scenario (see Figure 6), while the background indicates if

the traffic aircraft is visible in front of the sky or terrain.

As shown in Table I the average TTC for having a valid

track is about 15 to 20 seconds and the corresponding

distance is greater than 1500 m. Depending on the own-

ship this should be enough time to execute an avoidance

maneuver, e.g. by the pilot on the ground.

The best results are achieved on crossing from the right

scenarios with the sky as background as expected. Here we

have a larger visible cross-section of the traffic aircraft and

a lower closing speed compared to the head-on scenarios.

In addition, the contrast between the traffic aircraft and the

background is typically higher for scenarios in front of the

sky. The worst TTC is resulting from head-on scenarios in

front of terrain. In Section IV-C we explain the reasons based

on scenario C which was even flown at equal altitude.

False tracks are usually a result of clouds or ground clutter

which was not correctly removed by our filter pipeline, e.g.

because of wrong assignments of measurements to existing

tracks. There are two scenarios (D and H) which have a

significantly higher total number of false tracks and also a

longer maximum alive time (tmax) compared to the others.

The main reason for these false tracks are lens flares which

are also discussed in the following subsection.

Fig. 15. Comparison of aircraft patches (100 x 100 pixel) from a Pilatus
PC-6 for the scenarios C, E, and H (left to right). The top row shows a
patch for the initial detection and the bottom row the corresponding image
where the track was declared valid.



(a) Scenario A: head-on with the sky as background. (b) Scenario B: head-on with the sky as background.

(c) Scenario C: head-on at equal altitude. (d) Scenario D: head-on with terrain as background.

(e) Scenario E: crossing from the right with the sky as background. (f) Scenario F: crossing from the right with the sky as background.

(g) Scenario G: crossing from the right with the sky as background. (h) Scenario H: crossing from the right with terrain as background.

(i) Scenario I: crossing from the right with terrain as background. (j) Scenario K: crossing from the right with terrain as background.

Fig. 16. Overview of all evaluated scenarios. On the left we show the GPS positions of the own-ship and the traffic aircraft mapped to a rectangular
north-east reference frame. On the right a cropped example image from the tracker is shown with the track history in black and the prediction over one
second in green (best viewed in color).



TABLE II

DETAILED ANALYSIS OF THE FILTER PIPELINE

Scenario C Scenario E Scenario H

Average fused
7.8 2.3 11.0

detections per frame

Average initialized
1.8 0.4 1.7

tracks per frame

Precision for
0.42 0.69 0.19

EKF Tracker only

Precision for
1.0 0.85 0.21

EKF Tracker + Filters

C. Detailed Analysis

From the above scenarios we select three representative

ones to analyze the steps of our processing pipeline in detail.

An overview of the chosen scenarios is shown on the left

of Figures 16(c), 16(e) and 16(h). Figure 15 shows the

corresponding image patches for the first detection (top row)

and the moment a track is declared valid (bottom row) from

Table I.

The first chosen scenario C is certainly the most challeng-

ing one regarding the detection distance but also one of the

most dangerous ones: a head-on scenario at equal altitude. In

this situation the closing speed is the worst possible and the

shape of the incoming traffic is very small while it is only

slightly increasing in size at large distances. Only shortly

before the potential collision the increase rate starts to grow

significantly. The second scenario E is a crossing from the

right where the traffic is above the horizon. This represents

the common situation of flying at high altitude where other

aerial objects are typically visible in front of clouds or the

clear sky. The last scenario H is again a crossing from the

right but now in front of a mountain, a common situation

at lower altitudes and in mountainous areas. In addition the

elevation of the sun is very low and therefore lens flares

occur in the camera images.

For both crossing scenarios E and H we achieve satisfac-

tory results with initial track ranges greater than 1.5 km, even

if the traffic is in front of terrain. On the selected head-on

scenario C we perform significantly worse. While for the

initial detection until a potential collision there are more

than 10 seconds remaining, just about 7 seconds are left

when a valid track is available. This might be sufficient for

a fast autonomous avoidance maneuver to avoid the collision

but during normal operation a longer response time will be

preferred. Multiple factors add to this result: due to the head-

on scenario we have a high closing speed and the smallest

possible visual cross-section. Because of the available terrain

and the low altitude above ground the traffic aircraft appears

exactly at or below the horizon. Therefore only the image

differencing detector is applied which is just able to detect

changes in the size of the visual cross-section because hardly

any translational motion occurs.

Fig. 17. Examples of false tracks due to lens flares.

In Table II we give a detailed overview of our processing

pipeline by analyzing the different stages. In the first row we

show the average number of detections per frame for each

of the scenarios. This is the fused output of the detectors

converted to measurements for the tracker. Based on these

measurements the EKF tracker updates existing tracks and

initializes new ones if the measurement was not assigned to

an existing track. The average number of initialized tracks

based on new detections is shown in the second row. The

resulting precision for the bare EKF tracker without any

additional filter steps is shown in the third row. The definition

of precision is given by equation (7). After enabling the static

object and ground clutter filters we get the final results shown

in the bottom row.

precision =
correct tracks

correct tracks+ false tracks
(7)

If we compare the three scenarios, two facts attract at-

tention. First, there are a lot more detections per frame for

the scenarios C and H compared to the crossing scenario E.

Second, there is a significant difference in precision after

enabling the filter pipeline between the first and the head-

on scenario. Both issues arise from the same reason: in

scenarios C and H we have obviously a lot more false

detections per frame than in scenario E. There are different

reasons for false detections depending on the detector type.

As long as the morphological detector is only applied within

the sky region of the image it usually just fails on some

parts of heavily textured clouds. For the image differencing,

errors are already introduced by an imprecise transformation

estimation and the warping afterwards. In addition when

flying at low altitude even buildings and other stationary

objects changing their appearance when flying over are

candidates for false detections.

For the head-on scenario C the false detections are primar-

ily induced by buildings on the ground which are correctly

removed by the DTM projection filter step. As a result,

the precision is increasing significantly when enabling the

filter pipeline. The many false detections in the crossing

scenario H are mostly due to lens flares occurring throughout

the complete scenario. They get detected by the image

differencing because they move across the image depending

on the aircraft orientation with respect to the sun. Because



this type of false detection is currently not correctly handled

by our filter pipeline, the precision is obviously the worst.

Examples of false tracks due to lens flares are shown in

Figure 17.

The lower number of detections in the crossing scenario E

is due to the benign environmental conditions. There is no

direct sunlight visible in the lens and there is no city with

lots of buildings on the ground underneath. The remaining

false detections are due to clouds.

V. CONCLUSIONS AND FUTURE WORK

We have presented an experimental Sense and Avoid

system initially used to record example data from real

aircraft encounter scenarios. Based on the recorded dataset

we have outlined the major challenges to be faced with

while processing image frames recorded from an airborne

platform. With our multi-detector approach we successfully

detect and track incoming aircraft in the sky as well as in

front of terrain. The tracker based on a virtual sphere allows

us to fuse measurements from multiple sensors across sensor

gaps and reduce false detections due to lens pollution or

static parts of the own-ship. By combining the spherical

tracker with the DTM we are able to efficiently remove false

tracks due to static objects on the ground. By evaluating

the processing pipeline on challenging scenarios from our

dataset we achieve promising results with an average initial

track distance of more than 1500 m and a remaining TTC

of about 20 s.

In the future we plan to integrating the ADS-B and

FLARM messages into our tracking framework. This would

allow the tracking of cooperative aerial objects at even larger

distances and improve the overall situational awareness.
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