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AbstractÐ The integration of drones into the civil airspace
is still an unresolved problem. In this paper we present an
experimental Sense and Avoid system integrated into an aircraft
to detect and track other aerial objects with electro-optical
sensors. The system is based on a custom aircraft nose-pod
with two integrated cameras and several additional sensors.
First test ¯ights were successfully completed where data from
arti®cial collision scenarios executed by two aircraft were
recorded. We give an overview of the recorded dataset and
show the challenges to be faced with processing videos from a
mobile airborne platform in a mountainous area. The proposed
tracking framework is based on measurements from multiple
detectors fused onto a virtual sphere centered at the aircraft
position. To reduce false tracks from ground clutter, clouds
or dirt on the lens, a hierarchical multi-layer ®lter pipeline is
applied. The aerial object tracking framework is evaluated on
various scenarios from our challenging dataset. We show that
aerial objects are successfully detected and tracked at large
distances, even in front of terrain.

I. I NTRODUCTION

Over the past decade the market for Unmanned Aerial
Vehicles (UAVs) is increasing continuously. However an
accurate prediction of developments, especially in the civil
market, is currently very dif®cult because there is one major
challenge remaining: the integration of UAVs into the civil
airspace. The civil airspace is a heavily regulated area with
strict rules to ensure a safe operation for all participants. A
simpli®ed schematic overview of the available safety layers
is shown in Figure 1. First there are procedures that every
airspace user has to follow. For a controlled airspace there
is also air traf®c management available which organizes all
participants in a given area. If we look at a closer area around
a given aircraft there are transponder based technologies
available to make an aircraft visible to others. Up to now not
every aerial object is forced to include such a transponder
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Fig. 1. Schematic overview of airspace safety layers. In this paper we
focus on the See and Avoid part to detect aerial objects with cameras.

(a) Aircraft with sensor nose-pod (b) Example camera image

Fig. 2. The aircraft shown on the left was used to record a dataset
containing image and meta data of real aircraft encounter scenarios.

based device. Especially gliders, paragliders and balloons are
usually not equipped with such a device. Therefore the last
safety layer is always the pilot himself who has to look
outside and search for other aerial objects. This principle
is called ºSee and Avoidº.

If UAVs shall be integrated into this complex environment
they have to comply with the existing standards and regula-
tions. On the other hand these standards and regulations have
to be extended to correctly handle the differences between
a directly piloted aircraft and a remotely operated aircraft.
Because there are no standards available yet, there is a large
number of working groups and special committees working
on the integration of UAVs into the civil airspace (e.g. ASTM
F38, EUROCAE WG73, ICAO UASSG, RTCA SC-228).

Despite the ongoing activities for establishing the required
regulations there is also one big technical challenge remain-
ing: replacing the ºSee and Avoidº capability of the pilot
by a technical system. This research area is also known as
ºSense and Avoidº or ºDetect and Avoidº. As early results of
different working groups have shown [1]±[3], a Sense and
Avoid system shall provide an ºequivalent level of safety
compared to a human pilotº.

First research activities with focus on Sense and Avoid
have already started more than ten years ago within the
NASA ERAST project [4] using a RADAR to detect other
aircraft during the test ¯ights. A similar project was started
by the DLR in Germany [5] also based on a RADAR sensor.
In parallel the Airforce Research Lab performed initial ¯ight
tests to detect other aircraft by electro-optical (EO) sensors
based on an FPGA accelerated optical ¯ow algorithm [6].
In 2009, the European Defense Agency started the ºMid Air
Collision Avoidance Systemº (MIDCAS) project to develop
an experimental Sense and Avoid system based on EO,
infrared and RADAR sensors.
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(a) Camera ®eld of view (b) Sensor nose-pod

Fig. 3. Overview of the camera installation in the aircraft sensor nose-pod.
The given camera orientation was chosen to fully cover slightly more than
half of the proposed ®eld of view for a Sense and Avoid system (horizontally
� 110� , see [1]), which is suf®cient to simulate all relevant scenarios.

A popular way of detecting aerial objects within camera
images is to use morphological ®lters for the sky region [7]±
[9]. First closed-loop passive Sense and Avoid test ¯ights
based on morphological ®lters were demonstrated using a
GPU accelerated real-time implementation [10]. There also
exist other solutions e.g. based on a RADAR as primary
sensor which provides an initial estimate of the aerial object
angular position and a camera to increase the angular accu-
racy. The RADAR measurement is used to initialize a search
window within the camera image where an edge detection
algorithm is used to identify the aircraft [11].

In this paper we present an experimental Sense and Avoid
system (see Figure 2) based on multiple sensors. In contrast
to recent activities in obstacle avoidance with micro aerial
vehicles [12], [13] we focus on detecting aerial objects
using EO sensors (two cameras) at large distances and
track them to decide if a given object is on a collision
path. The cameras are a key component of the system
because many smaller airspace users are not equipped with
a transponder based device and some gliders, para-gliders or
balloons will be hard to detect by a RADAR within ground
clutter. The presented image processing pipeline is able to
robustly detect aerial objects in the sky as well as in front of
terrain. Measurements from multiple detectors and cameras
are integrated into a sensor-independent spherical tracking
framework with a multi-layer ®lter pipeline to remove false
detections from ground clutter, clouds or dirt on the lens.
We evaluate the proposed aerial object tracking framework
on various scenarios from our challenging dataset recorded
in the mountainous area of Switzerland. Experiments show
that the traf®c aircraft is successfully detected and tracked
at large distances (average initial track distance greater than
1500 m) with only few pixels visible, even in front of terrain.

The structure of this paper is as follows. Section II
describes the experimental system used to record the dataset
containing various aircraft encounter scenarios. Section III
gives an overview of the introduced processing pipeline to
detect and track aerial objects. In Section IV, experimental
results are presented, and in Section V we conclude the paper
and discuss future work.
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Fig. 4. The exposure controller adjusts the camera exposure time and the
lens aperture value. Correct exposure is determined by evaluating the image
histogram.

II. EXPERIMENTAL SYSTEM

In order to develop and measure the performance of
a Sense and Avoid system, example data of real aircraft
encounter scenarios is required. Therefore an experimental
Sense and Avoid system was built up consisting of a data
logger in the back of a Diamond DA42 aircraft and a custom
nose-pod (see Figure 3(b)) containing the following sensors:
an ADS-B1 receiver and a FLARM2 device to detect so
called ºcooperative traf®cº which is actively transmitting its
own position and velocity. On the other hand aerial objects
which do not actively share their own position are called
ºnon-cooperative traf®cº. To detect these types of airspace
users (e.g. para-gliders or balloons) we use two cameras.
Additionally an inertial measurement unit (IMU) and a GPS
receiver are also integrated.

A. Hardware

The built-in cameras are based on an 8 mega pixel sensor
with a bit depth of 8-bit or 12-bit and 20 fps or 10 fps
respectively. Together with the installed lens each camera
provides a ®eld of view (FOV) of65� � 51� , which results
in an angular resolution of about0:02� . For comparison,
the human eye usually provides an angular resolution of
approximately0:01� , but only at 2� around the center of
®xation [14]. The cameras have a global shutter which
is synchronized across the cameras by an external trigger
signal. A schematic overview of the camera installation in
the aircraft nose-pod is shown in Figure 3(a).

Exposure control:having a robust exposure controller
which correctly handles the huge range of different lighting
conditions (e.g. haze, dark terrain, direct sunlight, etc.) is
another important part of the system. Therefore a custom
controller according to Figure 4 was implemented to dynam-
ically adjust the exposure time (exp) and the lens aperture
(ape) values based on the mean image intensity as reference.
Special care had to be taken for very bright situations with

1Automatic Dependent Surveillance Broadcast is a transponder based
technology which is transmitting the own GPS position and velocity every
second to other airspace users. Depending on the transponder power the
maximum range can exceed 100 km.

2Flight Alarm is a proprietary, non certi®ed traf®c collision warning
system. The maximum range is typically in between 3-5 km. Even though
it is not a certi®ed aviation product most of the gliders in countries around
the Alps in Europe are equipped with such a device.



Fig. 5. Different lighting conditions extracted from the dataset.

e.g. direct sunlight to make sure we do not lose details in the
dark parts of the image. On the other hand for example if
only terrain is visible in the image, a trade-off has to be made
between lighting up the image and motion blur introduced
by the ego motion. Therefore the controller reference value
was automatically adjusted based on the number of pixels
above or below a given intensity value. The ®nal parameter
tuning was performed during pre-test-¯ights.

Lighting conditions:example images of various lighting
conditions in the dataset are shown in Figure 5. The top
row shows examples of common situations found in most
of the recorded scenarios. The bottom row contains some
challenging conditions such as re¯ections from haze, water,
direct sunlight or the lens itself.

During the test ¯ights all sensors produced continuously
about 300 MB/s of data which was handled by a custom
logging software to assure an accurate time handling in
between the different sources. To enable the pilots to focus
on the scenarios, the system was supervised and controlled
from a ground control station.

B. Dataset

The main focus of a Sense and Avoid system is to detect
and successfully avoid aerial objects on a potential collision
path. To simulate this scenario two different aircraft were

Own-ship

Traf®c

(a) Scenario: head-on

Own-ship

Traf®c

(b) Scenario: crossing from the right

Fig. 6. These base scenarios were used as a reference for all test-¯ights.

Fig. 7. Comparison of aircraft patches (100 x 100 pixel) from a Pilatus
PC-6 at different distances: 3.0 km, 1.5 km and 1.0 km. The top row shows
a crossing from the right and the bottom row a head-on scenario.

used to ¯y arti®cial pre-de®ned scenarios on a collision
course. For ¯ight safety a minimal vertical separation was re-
spected. The average aircraft velocity was around 100 knots
resulting in closing speeds up to 200 knots. All scenarios
were derived from one of the base scenarios shown in
Figure 6, where the aircraft with the sensor nose-pod (own-
ship) is shown at the bottom and the traf®c aircraft (a Pilatus
PC-6) at the top.

The standard head-on scenario was used to simulate a
direct collision where no translational motion of the traf®c
aircraft is visible in the camera reference frame and only
the size of the shape is increasing. The crossing from the
right is the more general case where two aircraft are on a
constant angle collision course, another dangerous situation
every pilot is aware of. By modifying the closing angle
and speed in between the two aircraft various situations
were recorded, e.g. traversal of both cameras by the traf®c
aircraft. Other applied variations include for example a wing-
rock of the own-ship to simulate massive ego motion or
an avoid maneuver of one of the aircraft or even both
of them. To include a representative overview of available
lighting conditions, all scenarios were repeated with different
orientations with respect to the sun and in front of terrain or
with the sky as background.

The ®nal recorded dataset includes more than 40 scenarios
and 5 hours of video and meta data. This includes the
ADS-B, FLARM, IMU, GPS and EO sensors of the own-ship
which were recorded for each separate scenario. In addition
the ground truth of the traf®c aircraft was recorded using a
differential GPS (D-GPS).

Distance comparison:small equally sized patches of the
traf®c aircraft at ®xed distance intervals are shown in Fig-
ure 7. The top row is taken from a crossing from the right
scenario where the traf®c was ¯ying at a slightly higher
altitude than the own-ship. In the bottom row, cutouts of
a head-on scenario are shown. These scenarios are usually
more dif®cult because the visible cross-section of the traf®c
aircraft is minimal.



Fig. 8. Comparison of aircraft patches (100 x 100 pixel) from a head-
on scenario in front of a mountain at 8-bit (top) and 12-bit (bottom) and
different distances: 3.0 km, 1.5 km and 1.0 km.

Bit depth comparison:a head-on scenario where the traf®c
aircraft is coming closer in front of a mountain, while the
sun was simultaneously visible in one of the camera edges,
is shown in Figure 8. We show a direct comparison between
image data available in 8-bit and 12-bit. The upper row shows
the 8-bit equivalents at different distances while the lower
row shows the corresponding 12-bit image. For visualization
purposes the original 12-bit image was requantized into an
8-bit band. It is obvious that especially for such challenging
lighting conditions a higher bit depth provides signi®cant
advantages.

III. D ETECTION AND TRACKING OF

AERIAL OBJECTS

This section focuses on the image processing framework
proposed for the detection and tracking of aerial objects from
an aircraft. We use a tracking by detection approach with
the main visual steps shown at the top of Figure 9. First, we
estimate the horizon line to separate each frame into a sky
and a terrain region. Second, different detectors are applied
based on the estimated horizon. Third, the detections from all
detectors and cameras are converted to sensor independent
measurements and fused for the tracker. The fourth step

Camera
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Fig. 9. The image processing pipeline with the main visual steps at the top.
Additional meta information from a GPS receiver, an inertial measurement
unit (IMU) and a digital terrain model (DTM) is shown by dotted lines.

Aircraft  c

� h

dh

dp

 er e

ha

r e

Earth surface

z

Fig. 10. We calculate an initial horizon estimate based on the the aircraft
altitude, attitude and the assumption of the earth being a sphere with constant
radius.

includes the spherical tracker and the track veri®cation
steps. Additional meta information such as GPS or IMU
measurements and a digital terrain model (DTM) which are
used throughout the processing pipeline are visualized by
dotted lines. The detailed explanation of the different blocks
is part of the following subsections.

A. Horizon Estimation based on Aircraft Attitude

The horizon estimation is a multi-step procedure required
by the aerial object detectors (see Section III-B) where we
use different detectors and parameters for the sky and terrain
parts of the images.

Initial estimate:®rst we calculate an initial estimate based
on the aircraft position and attitude according to Figure 10.
The aircraft attitude is mapped from the aircraft reference
frame to the camera reference frame using the extrinsic
camera calibration. The horizon pitch angle� h is given by
the tangent from the aircraft to the surface of the earth
and the z-axis of the camera reference frame. With the
assumption of the earth being a sphere with radiusr e we
can derive� h from the aircraft altitudeha and the camera
pitch angle c, see equations (1) to (4).

dh =
p

(r e + ha)2 ! r 2
e (1)

 e = arccos
�

r e

r e + ha

�
(2)

dp = tan(  e) � (r e + ha) (3)

� h = arccos
�

dh

dp

�
!  c (4)

The horizon roll angle in the camera reference frame is
directly given by the camera roll angle. The accuracy of
the estimated horizon line is primarily affected by the an-
gular accuracy of the IMU. When ¯ying at high altitude
or above nearly ¯at terrain this initial estimate already
provides reasonable results. At lower altitudes and especially
in mountainous terrain a re®nement is required.

Re®nement:in a second step we calculate a re®nement
based on the initial estimate. Because this initial estimate



(a) Initial horizon estimate based on aircraft altitude and attitude

(b) Re®ned horizon using edge detection and dynamic programming

Fig. 11. Example images for the horizon estimation steps.

indicates the position of the horizon on ¯at terrain, we just
allow a re®nement above the existing estimate to account for
protruding mountains. The re®nement is based on edges and
a dynamic programming algorithm [15]. Example images are
shown in Figure 11.

There are currently still issues with scenarios where we
have heavily textured clouds at the horizon. Because we
make sure by our initial estimate that the horizon is not too
low, the precision of the later re®nement is not critical. It
is usually not an issue if we apply an aerial object detector
tuned for terrain background to a sky region. In contrast
applying a detector optimized for sky regions to terrain will
result in lots of false detections. To further improve the
robustness additional cues (e.g. intensity or gradients [16])
could be integrated into the estimation process.

B. Object Detection

Our processing framework allows to include multiple
independent detectors which provide measurements for the
tracker. The main challenges are the very small size of the
aerial objects and the ego-motion of the own-ship. Currently
we use the following two detectors.

Morphological operations:morphological close-minus-
open ®lters are widely used to detect aerial objects in a
Sense and Avoid environment [8], [10] because they provide
reasonable results at relatively low computational costs. A
main issue of this approach is the limitation to the sky region
of an image. When applying the morphological ®lters to an
area in the image with terrain as background they would only
provide a massive amount of false detections.

Image differencing:to extend the aerial object detection to
image areas with terrain as background, a common scenario
when ¯ying at low altitude in a mountainous area, we use
an image differencing pipeline [17]. First we extract key-
points from every image and search for matches in between
consecutive frames. Based on these matches we estimate the
transformation from the old frame to the current one. By
warping and subtracting the old from the current we get
the detection candidates. Based on the estimated horizon we
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Fig. 12. Virtual tracking sphere ®xed to a north-east-down reference frame
at the global aircraft position.

apply different thresholds for the sky and terrain region of the
image in the following binarization step. The ®nal detections
are extracted by labeling the connected components. Using
different thresholds for the sky and terrain part usually
enables us to achieve larger detection distances for the sky
region.

In contrast to the morphological ®lters the image differ-
encing allows us to detect aerial objects not only above the
horizon but also in front of terrain. However even if we use
different thresholds for the sky and terrain parts we typically
achieve larger detection distances with the morphological
detector for the sky region.

C. Detection Fusion

Another key contribution of our tracking framework is
the decoupling of detections and tracks from the sensor
reference frame. We propose a virtual sphere around the
aircraft as shown in Figure 12. The sphere is independent
of aircraft attitude and ®xed to a north-east-down reference
frame centered at the global aircraft position.

All detectors provide their measurements in the camera
pixel reference frame. In the Detection Fusion step, the
raw detections from every single camera and detector are
transformed from pixel coordinates to spherical azimuth and
elevation angles and fused to measurements for the tracker
as points on the surface of the virtual sphere. The pixel
values are ®rst converted to azimuth and elevation angles in
the camera reference frame using a standard camera pinhole
model accounting for radial and tangential lens distortions
[18]±[20]. The second step includes the transformation from
camera reference frame to the tracking sphere by using the
camera attitude given by the aircraft IMU. In the last step,
detections from overlapping cameras or multiple detectors
are fused based on their position and size.

FOV restriction: according to [1] a Sense and Avoid
system shall provide a vertical FOV of� 15� . Therefore we
discard detections outside the recommended area.

This architecture allows us to easily integrate additional
sensors to the system by a proper external calibration with
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Fig. 13. False detection ®lter steps for track veri®cation.

respect to the tracking sphere, e.g. additional cameras with
different resolutions or wavelengths. In addition we do not
have to take special care for overlapping or non-overlapping
camera FOVs.

D. Tracking and Veri®cation

As described in the previous section we project all detec-
tions to a global virtual sphere around the aircraft position
shown in Figure 12. For the aerial object tracking we have
implemented a constant angular velocity Extended Kalman
Filter (EKF) with the states shown in equation (5) and
the non-linear update equation (6). The azimuth (azi) and
elevation (ele) angles specify the global track position on
the surface of the unit sphere. The track velocity is given
by the track heading� and the angular velocity! de®ned
as the track velocity on the surface of the sphere divided by
the sphere radius. Changes in track velocity or heading are
handled by the corresponding process noise� � and � ! .

x ekf = [ azi; ele; �; ! ]| (5)

x ekf (t + 1) = x ekf (t) + � t �
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Tuning the detectors requires making a trade-off between
detection range and false-detection rate. With increasing
distance the objects get smaller, visually less distinctive and
represented by fewer pixels. To achieve a useful detection
range we have to take into account a large amount of false
positives. To separate the aerial objects from clutter we
propose the multi-layer ®lter architecture shown in Figure 13.

EKF Tracker: in a ®rst step we update the tracks in our
EKF ®lter with new detections. If a detection is not assigned
to an existing track, a new track is initialized. A detection is
successfully assigned to an existing track if it lies within
a given area de®ned by the predicted track position and
the corresponding covariances. All created tracks undergo a
veri®cation phase for the next couple of frames. During this
time additional measurements are required and the candidate
track has to successfully pass all the additional ®lter steps
to be declared valid. For all tracks we keep a history of
their previous pixel and angular positions which will be used
throughout the ®lter steps.

Static object ®lter:in the second step, we ®lter static
objects which are typically created due to lens pollution,
clouds or if parts of the own aircraft are visible in the

t1 t2 t3

Own-ship
Traf®c

(a) Schematic overview of a valid aircraft trajectory projected to the
surface of the DTM over multiple time steps.

t1 t2 t3

Own-ship Ground clutter

(b) Schematic overview of the projection of ground clutter to the surface
of the DTM over multiple time steps.

Fig. 14. Comparison of an aircraft trajectory and ground clutter projected
to the surface of the digital terrain model.

camera. Note that static can refer to 'constant pixel position'
or 'constant position on the virtual sphere'. In our dataset
e.g. the pitot probe from the right wing is partially visible
in the right camera. Due to vibrations and minor ¯apping of
the wings the pitot probe is an ideal candidate for the image
differencing detector. Dirt on the lens is usually less critical
because it is heavily out of focus. Due to our virtual tracking
sphere and the ego motion of the aircraft we are able to ®lter
these static objects by analyzing the history of a track's pixel
positions and compare them with the global track motion
in azimuth and elevation angles. To avoid discarding aerial
objects on a constant angle collision course a candidate track
is only removed if its size is constant over time.

Ground clutter ®lter: the third step is to reduce the
amount of ground clutter generated by the image differencing
detector, typically a result of stationary objects on the ground
changing their appearance when ¯ying over at low altitude.
To separate ground clutter from a valid aerial object we
project the candidate track history to the surface of a DTM.
In Figure 14 we show a comparison between the projection of
a valid aircraft trajectory and the projection of a false track
due to a static object on the ground to the surface of the
DTM. Using the DTM to analyze the motion of a candidate
track on the terrain surface allows us to successfully remove
false tracks from stationary objects on the ground.

Valid tracks:®nally if a new candidate track passes all the
proposed ®lter steps it will be declared as ºvalidº, but even
a valid track has to continuously pass all the ®lter steps.

IV. EXPERIMENTS

In this section we focus on the evaluation of the processing
pipeline based on our challenging dataset. First, we give an
overview of the results across different scenarios. Second, we
present a detailed analysis of our ®lter architecture to explain
the challenges occurring when tracking aerial objects from
an airborne platform.



TABLE I

COMPARISON OF FIRST DETECTION AND VALID TRACK DISTANCES WITH THE CORRESPONDING TIME TO COLLISION

Scenario details First detection Valid track False tracks

Type Background Duration Distance TTC Distance TTC Num. tmax

A Head-on Sky 28 s 2780 m 26.2 s 1874 m 17.6 s 1 1 s

B Head-on Sky 27 s 2649 m 24.0 s 1622 m 14.5 s 0 -

C Head-on Terrain 25 s 1350 m 11.6 s 980 m 7.8 s 0 -

D Head-on Terrain 24 s 2810 m 22.4 s 1116 m 9.0 s 11 12 s

E Crossing Sky 37 s 2960 m 36.8 s 2830 m 35.3 s 2 2 s

F Crossing Sky 48 s 2977 m 48.0 s 2588 m 42.2 s 0 -

G Crossing Sky 31 s 2833 m 29.5 s 1831 m 17.7 s 2 2 s

H Crossing Terrain 31 s 2370 m 23.3 s 1550 m 14.2 s 18 8 s

I Crossing Terrain 33 s 2767 m 30.2 s 1489 m 14.0 s 2 5 s

K Crossing Terrain 43 s 2596 m 37.8 s 1593 m 23.4 s 4 4 s

Average - - 33 s 2609 m 29 s 1747 m 19.6 s 4 3.4 s

A. Evaluation Criteria

The evaluation of our processing pipeline is based on the
scenarios shown in Figure 16. For each scenario we analyze
the ®rst detection by one of the detectors and the moment the
track is declared valid. As evaluation criteria we chose the
remaining distance in between the own-ship and the traf®c
aircraft and the time to collision (TTC).

Distance: the remaining distance in between the two
aircraft is de®ned as the euclidean distance between the GPS
position of the own-ship and the D-GPS ground truth of the
traf®c aircraft.

Time to collision:for the calculation of the TTC we de®ne
the closest point of approach (CPA) as the position of the
own-ship at the time where the distance to the traf®c aircraft
is minimal. With the assumption of a constant velocity the
TTC is given by the distance from the current position to the
CPA divided by the current speed.

In addition we show the total number of false tracks for
each scenario. To allow a comparison between the track alive
time of the traf®c aircraft and the number of available false
tracks we show the maximum alive time of all false tracks
(tmax ). This value can directly be compared with the TTC
of a valid track, because once a track is declared valid, we
usually do not lose it again due to the continuously increasing
size of the traf®c aircraft, if it is on a collision path.

B. Results

All of the chosen scenarios start at an initial distance of
3 km with the traf®c aircraft already within the FOV of one of
the cameras and end at the CPA. An overview of the results
achieved across various scenarios from our dataset is shown
in Table I. The scenario type de®nes the corresponding base
scenario (see Figure 6), while the background indicates if
the traf®c aircraft is visible in front of the sky or terrain.

As shown in Table I the average TTC for having a valid
track is about 15 to 20 seconds and the corresponding
distance is greater than 1500 m. Depending on the own-

ship this should be enough time to execute an avoidance
maneuver, e.g. by the pilot on the ground.

The best results are achieved on crossing from the right
scenarios with the sky as background as expected. Here we
have a larger visible cross-section of the traf®c aircraft and
a lower closing speed compared to the head-on scenarios.
In addition, the contrast between the traf®c aircraft and the
background is typically higher for scenarios in front of the
sky. The worst TTC is resulting from head-on scenarios in
front of terrain. In Section IV-C we explain the reasons based
on scenario C which was even ¯own at equal altitude.

False tracks are usually a result of clouds or ground clutter
which was not correctly removed by our ®lter pipeline, e.g.
because of wrong assignments of measurements to existing
tracks. There are two scenarios (D and H) which have a
signi®cantly higher total number of false tracks and also a
longer maximum alive time (tmax ) compared to the others.
The main reason for these false tracks are lens ¯ares which
are also discussed in the following subsection.

Fig. 15. Comparison of aircraft patches (100 x 100 pixel) from a Pilatus
PC-6 for the scenarios C, E, and H (left to right). The top row shows a
patch for the initial detection and the bottom row the corresponding image
where the track was declared valid.



(a) Scenario A: head-on with the sky as background. (b) Scenario B: head-on with the sky as background.

(c) Scenario C: head-on at equal altitude. (d) Scenario D: head-on with terrain as background.

(e) Scenario E: crossing from the right with the sky as background. (f) Scenario F: crossing from the right with the sky as background.

(g) Scenario G: crossing from the right with the sky as background. (h) Scenario H: crossing from the right with terrain as background.

(i) Scenario I: crossing from the right with terrain as background. (j) Scenario K: crossing from the right with terrain as background.

Fig. 16. Overview of all evaluated scenarios. On the left we show the GPS positions of the own-ship and the traf®c aircraft mapped to a rectangular
north-east reference frame. On the right a cropped example image from the tracker is shown with the track history in black and the prediction over one
second in green (best viewed in color).



TABLE II

DETAILED ANALYSIS OF THE FILTER PIPELINE

Scenario C Scenario E Scenario H

Average fused
7.8 2.3 11.0

detections per frame

Average initialized
1.8 0.4 1.7

tracks per frame

Precision for
0.42 0.69 0.19

EKF Tracker only

Precision for
1.0 0.85 0.21

EKF Tracker + Filters

C. Detailed Analysis

From the above scenarios we select three representative
ones to analyze the steps of our processing pipeline in detail.
An overview of the chosen scenarios is shown on the left
of Figures 16(c), 16(e) and 16(h). Figure 15 shows the
corresponding image patches for the ®rst detection (top row)
and the moment a track is declared valid (bottom row) from
Table I.

The ®rst chosen scenario C is certainly the most challeng-
ing one regarding the detection distance but also one of the
most dangerous ones: a head-on scenario at equal altitude. In
this situation the closing speed is the worst possible and the
shape of the incoming traf®c is very small while it is only
slightly increasing in size at large distances. Only shortly
before the potential collision the increase rate starts to grow
signi®cantly. The second scenario E is a crossing from the
right where the traf®c is above the horizon. This represents
the common situation of ¯ying at high altitude where other
aerial objects are typically visible in front of clouds or the
clear sky. The last scenario H is again a crossing from the
right but now in front of a mountain, a common situation
at lower altitudes and in mountainous areas. In addition the
elevation of the sun is very low and therefore lens ¯ares
occur in the camera images.

For both crossing scenarios E and H we achieve satisfac-
tory results with initial track ranges greater than 1.5 km, even
if the traf®c is in front of terrain. On the selected head-on
scenario C we perform signi®cantly worse. While for the
initial detection until a potential collision there are more
than 10 seconds remaining, just about 7 seconds are left
when a valid track is available. This might be suf®cient for
a fast autonomous avoidance maneuver to avoid the collision
but during normal operation a longer response time will be
preferred. Multiple factors add to this result: due to the head-
on scenario we have a high closing speed and the smallest
possible visual cross-section. Because of the available terrain
and the low altitude above ground the traf®c aircraft appears
exactly at or below the horizon. Therefore only the image
differencing detector is applied which is just able to detect
changes in the size of the visual cross-section because hardly
any translational motion occurs.

Fig. 17. Examples of false tracks due to lens ¯ares.

In Table II we give a detailed overview of our processing
pipeline by analyzing the different stages. In the ®rst row we
show the average number of detections per frame for each
of the scenarios. This is the fused output of the detectors
converted to measurements for the tracker. Based on these
measurements the EKF tracker updates existing tracks and
initializes new ones if the measurement was not assigned to
an existing track. The average number of initialized tracks
based on new detections is shown in the second row. The
resulting precision for the bare EKF tracker without any
additional ®lter steps is shown in the third row. The de®nition
of precision is given by equation (7). After enabling the static
object and ground clutter ®lters we get the ®nal results shown
in the bottom row.

precision =
correct tracks

correct tracks + false tracks
(7)

If we compare the three scenarios, two facts attract at-
tention. First, there are a lot more detections per frame for
the scenarios C and H compared to the crossing scenario E.
Second, there is a signi®cant difference in precision after
enabling the ®lter pipeline between the ®rst and the head-
on scenario. Both issues arise from the same reason: in
scenarios C and H we have obviously a lot more false
detections per frame than in scenario E. There are different
reasons for false detections depending on the detector type.
As long as the morphological detector is only applied within
the sky region of the image it usually just fails on some
parts of heavily textured clouds. For the image differencing,
errors are already introduced by an imprecise transformation
estimation and the warping afterwards. In addition when
¯ying at low altitude even buildings and other stationary
objects changing their appearance when ¯ying over are
candidates for false detections.

For the head-on scenario C the false detections are primar-
ily induced by buildings on the ground which are correctly
removed by the DTM projection ®lter step. As a result,
the precision is increasing signi®cantly when enabling the
®lter pipeline. The many false detections in the crossing
scenario H are mostly due to lens ¯ares occurring throughout
the complete scenario. They get detected by the image
differencing because they move across the image depending
on the aircraft orientation with respect to the sun. Because



this type of false detection is currently not correctly handled
by our ®lter pipeline, the precision is obviously the worst.
Examples of false tracks due to lens ¯ares are shown in
Figure 17.

The lower number of detections in the crossing scenario E
is due to the benign environmental conditions. There is no
direct sunlight visible in the lens and there is no city with
lots of buildings on the ground underneath. The remaining
false detections are due to clouds.

V. CONCLUSIONS ANDFUTURE WORK

We have presented an experimental Sense and Avoid
system initially used to record example data from real
aircraft encounter scenarios. Based on the recorded dataset
we have outlined the major challenges to be faced with
while processing image frames recorded from an airborne
platform. With our multi-detector approach we successfully
detect and track incoming aircraft in the sky as well as in
front of terrain. The tracker based on a virtual sphere allows
us to fuse measurements from multiple sensors across sensor
gaps and reduce false detections due to lens pollution or
static parts of the own-ship. By combining the spherical
tracker with the DTM we are able to ef®ciently remove false
tracks due to static objects on the ground. By evaluating
the processing pipeline on challenging scenarios from our
dataset we achieve promising results with an average initial
track distance of more than 1500 m and a remaining TTC
of about 20 s.

In the future we plan to integrating the ADS-B and
FLARM messages into our tracking framework. This would
allow the tracking of cooperative aerial objects at even larger
distances and improve the overall situational awareness.
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