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Abstract— In this paper, we present a new approach for
automatic car detection from aerial images. The system exploits a
robust machine learning method known as boosting for efficient
car detection from high resolution aerial images. We propose
to use on-line boosting with interactive training framework to
efficiently train and improve the detector. We use integral images
for fast computation of features. This also allows to perform
exhaustive search for detection of cars after training. For post
processing, we employ a mean shift clustering method, which
improves the detection rate significantly. In contrast to related
work, our framework does not rely on any priori knowledge
of the image like a site-model or contextual information, but if
necessary this information can be incorporated. An extensive set
of experiments on high resolution aerial images using the new
UltraCamD shows the superiority of our approach.

Index Terms— Machine learning, pattern recognition, Ad-
aboost, on-line learning, computer vision, object detection, car
detection, aerial image, UltraCamD.

I. INTRODUCTION

RECENT years, a robust machine learning method named
boosting has become popular. Boosting has been used

for text recognition, text filtering, routing, “ranking” problems,
learning problems in natural language processing, medical
diagnostic, customer monitoring and segmentation [33]. Var-
ious boosting frameworks have been developed for solving
machine learning problems [33], [7], [8], [37]. Following the
remarkable success of the face detector introduced by Viola
and Jones in [39], boosting techniques have been widely used
for different problems in the computer vision community.
The detection problem is formulated as binary classification
problem, discriminating the object from the background. The
learned classifier is evaluated on the whole image. In order to
speed up the exhaustive search in the classical work of [39], in-
tegral images were employed, which allow very fast computing
of simple image features for object representation. Besides, a
cascade structure enables the detector to be simultaneously fast
and accurate. This framework allows to proceed efficiently on
large image data and has been successfully applied in various
object detection problems. Some on-line learning frameworks
have been proposed to deal with this problem for object
detection and classification [14], [18], [22], [30], [1]. The
on-line strategy aims to reduce hand labeling effort of training
samples and gives possibilities to increase variances of training
data in an on-line manner, while progressively improving the
classifier.
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Building an efficient and robust framework for object de-
tection from in aerial images has drawn the attention of
research community in computer vision for years, e.g. [32],
[29], [44], [12], [3]. The problem of car detection from aerial
images has a variety of civil and military applications, for
example transportation control, road verification to complete
land use classification problem for urban planning, or military
reconnaissance, etc.

An aerial image taken by airplane is a large-scale image
which contains a lot of objects with a complicated background
of the urban scene. For example, UltraCamD camera from
Microsoft-Vexcel can deliver large format panchromatic im-
ages as well as multi spectral images, see [16]. The high
resolution images have a size of 11500 pixels across-track and
7500 pixels along-track. Thus a panchromatic image has a size
of 84 MB and a RGB or NIR (near infrared) image has a size
of 252 MB. These large images need automatic methods for
efficient processing. Besides, aerial images are usually taken
from a vertical or slightly slanting direction. Although with
some constraints on the viewpoint, the appearance of the cars
in the image is widely varying. Cars appear as small objects,
which vary in intensity and many details are not visible.
Moreover, the urban scene contains a complicated background
with variety of objects that look like cars such as windows,
roofs of buildings, corners of streets. All these properties make
it difficult to characterize the features of a car and imposes
challenges in recognizing cars from aerial images.

The approaches to object (car) detection can be considered
as two groups according to the type of the used models:
the explicit modeling approach and the implicit modeling
approach [12].

The explicit model approach uses a generic car model [44],
[21], [12], [35], [13]. A car is represented as a 2D or 3D
model of the shape of cars. Features are prominent geometric
features of cars on different levels of detail. In the detection
stage, image features are extracted and grouped to construct
structures similar to a car model. The car object is considered
to be detected if there is sufficient evidence of the model in the
image. This approach relies mainly on geometric features with
edges, lines and surfaces to construct a hierarchical structure.
In aerial images cars are rather small, therefore the models
can not be very detailed because the features are no longer
detectable, on the other hand generic and simple models have
the inherent danger of fitting to many places on the image,
therefore not being discriminative enough.

In implicit or appearance-based approach, the car model
is created by example images of cars, which consist of gray
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value or texture features. Appearance models are created by
collecting statistics over these features. For car detection in
terrestrial images, some part or component based models have
been proposed [5], [11], [4]. The classifier architecture can be
a single classifier, a classifier combination or a hierarchical
model. Support vector machines were mainly used for classi-
fication [29], [36], [26], [11], [4]. The detection is done for
image regions by computing the feature vectors and classifying
them against the model features. Although these approaches
have certain advantages there exist drawbacks. Mostly, the
feature’s calculation and classification is computational expen-
sive. Moreover, there is a need of huge amount of labeled data
for training the detector. The training set should provide a good
coverage over the space of possible appearance variations of
the data. This needs a lot of time and labor forces to build the
training data in advance and limits the possibility to diversify
the variances of training samples during the training phase.

None of the mentioned work (up to our knowledge) uses
boosting methods for object (car) detection from aerial images.
In this paper, we focus on developing a robust boosting-based
system for car detection from aerial images. The main goal
is to obtain a high quality car detection system by using
novel machine learning methods with an efficient training
mechanism.

First, we propose to use boosting on aerial images. In
particular, we use efficient integral image representation for
fast calculation of car’s features. In addition to the commonly
used Haar wavelet [39], we use local orientation histogram [6]
and local binary patterns [23] as features.

Second, a novel on-line version of Adaboost is employed
to train the detector. The algorithm performs on-line updating
of the ensembles of features during the training process. By
on-line training, we can update the classifier as a new sample
arrives, and therefore can minimize the tedious work of hand
labeling of training samples.

The developed framework results in a robust and automatic
car detection system from aerial images and achieves a high
performance. The system is flexible since we do not use
any constraint to site-model or textual knowledge or other
information about the appearance of cars in the images.

The paper is organized as the following. Section II presents
our approach for building the framework for car detection
from aerial images. Section III is dedicated to experiments
and results. An additional discussion about the utility of all
the available data delivered by UltraCamD to integrate our
system with related applications is also presented. Section IV
is for discussion and future work.

II. SYSTEM DESCRIPTION

We propose an on-line boosting based framework for car
detection from aerial images based on appearance models.
First, we summarize the boosting method which will be used
for feature selection. The active training process, which allows
efficient on-line learning, is described afterward. Then, the
features used for classification are discussed. Car detection is
performed on an image by applying the trained classifier in an
exhaustive search over all possible locations and rotations of

the image. Finally, a post processing stage using the mean shift
clustering technique is presented to improve detection rate. In
addition, we show how context information can be used to
further improve the detection results.

A. Boosting

In general boosting converts (boosts) a weak learning algo-
rithm into a strong one. Boosting has been analyzed carefully
(e.g. [34]) and tested empirically by many researchers. Various
variants of Boosting have been developed (e.g. Real-Boost [8],
LP-Boost [7]). We focus on the discrete AdaBoost (adaptive
boosting) algorithm introduced by Freund and Shapire [8].
It adaptively re-weights the training samples instead of re-
sampling them.

The basic algorithm works as follows: Given a training set
X = {〈x1, y1〉, ..., 〈xL, yL〉 | xi ∈ Rm, yi ∈ {−1,+1}} with
positive and negative labeled samples and an initial uniform
distribution p(xi) = 1

L over the examples.
Based on X and p(x) a weak classifier hweak is trained. A

weak classifiers is a classifier that has to perform only slightly
better than random guessing, i.e., for a binary decision task,
the error rate must be less than 50%. The classifier is obtained
by applying a learning algorithm (e.g. applying statistical
learning for a decision stump). Based on the error en the weak
classifier hweak

n gets assigned a weight αn = 1
2 · ln

(
1−en

en

)
.

The probability p(x) is updated such that it increases for
the samples that are misclassified. If the sample is classified
correctly the corresponding weight is decreased. Therefore,
the algorithm focuses on the difficult examples. The process
is repeated, and at each boosting iteration a new weak classifier
is added, until a certain stopping condition is met (e.g. a given
number of weak classifiers are trained).

Finally, a strong classifier hstrong(x) is computed as linear
combination of a set of N weak classifiers hweak

n (x):

hstrong(x) = sign(conf(x)) (1)

conf(x) =
∑N

n=1 αn · hweak
n (x)∑N

n=1 αn

(2)

As conf(x) is bounded by [−1, 1], it can be interpreted as
a confidence measure. The higher the absolute value is, the
more confident is the result.

Freund and Schapire [8] proved strong bounds on the
training and generalization error of AdaBoost. For the case
of binary classification the training error drops exponentially
fast with respect to the number of boosting rounds N (i.e.
number of weak classifiers). Schapire et al. [34], [31] showed
that boosting maximizes the margin and proved that larger
margins for the training set are translated to superior upper
bounds on the generalization error.

B. On-line Boosting for feature selection

Boosting for feature selection was first introduced by Tieu
and Viola [38]. Feature selection from a large set of features
is done by Adaboost. The main idea is that each feature
corresponds to a single weak classifier and boosting selects
an informative subset from these features.
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Training proceeds similar to the described boosting algo-
rithm. Given a set of possible features F = {f1, ..., fk} in
each iteration step n the algorithm builds a weak hypothesis
based on the weighted training samples. The best one forms
the weak hypothesis hweak

n which corresponds to the selected
feature fn. With respect to the error of the chosen hypotheses
the weights of the training samples are updated. Finally, a
strong classifier hstrong is computed as a weighted linear
combination of the weak classifiers, where the weights αn are
estimated according to the errors of hweak

n as described above.
Boosting for feature selection as described above works off-
line. Thus, all training samples must be given in advance. In
our work we use on-line feature selection [10] based on an on-
line version of AdaBoost [25], [24]. Therefore, each boosting
step of the off-line algorithm has to be done on-line. The
mechanism performs an update of weak classifiers whenever a
new training sample arrives, which allows to adaptively train
the detector and efficiently generate the training set. First,
we briefly summarize the on-line boosting idea. Second, we
discuss how it can be used for feature selection.

The basic idea in on-line boosting is that the importance
(difficulty) of a sample can be estimated by propagating it
through the set of weak classifiers. One can think of this,
as modeling the information gain with respect to the first n
classifier and code it by the importance weight λ (initialized
by 1) for doing the update of the n + 1-th weak classifier.
Oza [25] has proved, if off-line and on-line boosting are given
the same training set, then the weak classifiers returned by on-
line boosting converges statistically to the one obtained by off-
line boosting as the number of iterations N →∞. Therefore,
for repeated presentation of the training set on-line boosting
and off-line boosting deliver the same result.

In our system, on-line boosting for feature selection is
performed by introducing “selectors” and perform on-line
boosting on these selectors and not directly on the weak
classifiers. Each selector hsel(x) holds a set of M weak
classifiers {hweak

1 (x), . . . , hweak
M (x)} and selects one of them

hsel(x) = hweak
m (x) (3)

according to an optimization criterion (we use the estimated
error ei of each weak classifier hweak

i such that m =
arg mini ei).

Note, that the selector can be interpreted as a classifier (he
switches between the weak classifiers). Training a selector
means that each weak classifier is trained (updated) and the
best one (with the lowest estimated error) is selected. Similar
to the off-line case, the weak classifiers correspond to features,
i.e. the hypotheses generated by the weak classifier is based
on the response of the feature.

In particular, the on-line training framework of AdaBoost
for feature selection works as follows: First, a fixed set of
N selectors hsel

1 , .., hsel
N is initialized randomly with weak

classifier (i.e. features). When a new training sample 〈x, y〉
arrives the selectors are updated. This update is done with
respect to the importance weight λ of the current sample. For
updating the weak classifiers, any on-line learning algorithm
can be used (see Section II-C for more details). The weak
classifier with the smallest estimated error is selected by the

Fig. 1. Efficient calculation of the sum of a rectangular area. The value of
the integral image at Position P1 is the sum of the pixel values in region A.
P2 corresponds A+B, P3 to A+C and P4 to A+B +C +D. Therefore,
the sum of the area D can be calculated by only applying 4 reference points
as P4 + P1 − P2 − P3.

selector. Finally, the corresponding voting weight αn and the
importance weight λ of the sample are updated and passed to
the next selector hsel

n+1. The weight increases if the example is
misclassified by the current selector or decreased otherwise.
For more details see [10].

Finally, a strong classifier is obtained by linear combination
of N selectors.

hstrong(x) = sign
( N∑

n=1

αn · hsel
n (x)

)
(4)

In contrast to the off-line version a classifier is available at
any time.

C. Image representation and features

The main purpose of using features instead of raw pixel
values as input to a learning algorithm is to reduce the inter-
class variability while increasing the out-of-class variability.
In addition “ad-hoc” knowledge can be included. In our work
we use three different types of features, which are: Haar-like
features [39], Orientation histograms [17], [6] and a simple
version of local binary patterns (LBP) [23]. One can think
of combining more of such (local) features and also include
global features, like in [43].

Note, that the computation of all feature types can be
done very efficiently using integral images [39] and integral
histograms [28] as data structures. This allows to do exhaus-
tive template matching when scanning the whole image. An
integral image II sums up all the pixel values from the upper
left up to the current position, more formally it is defined on
an image I as

II(x, y) =
x∑

x′=1

y∑
y′=1

I(x′, y′) (5)

This pre-calculcation of an integral image can be efficiently
implemented in one pass over the image. Afterwards, any sum
of any rectangular region can be computed by only 4 memory
accesses and 3 additions, see

1 for an example. This idea can be easily extended to
represent histograms: For each bin one integral image is built
separately.

Since we know the resolution of the image, search for cars
at different scales is not necessary, but cars can appear at any
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orientation. Instead of training the classifier with different
orientations we train it at one ”norm” orientation, and evaluate
it by rotating the detector. Rotation of the detector can be
done by computing the features at different angles for the
detection process. Lienhart [19] introduced an additional set
of rotated Haar-like features, which are an enriched set of
basic features and can be computed efficiently. [20] proposed
to use different types of Haar-like features. A previously
trained classifier is converted to work at any angle, so rotated
objects can be detected. A real-time version for the rotational
invariant Viola-Jones detector has been reported in [40]. A
similar technique is employed in our system, the detector is
rotated by increments in 10◦. The rotation for the orientation
histogram features can be done very easy by shifting the
histogram.

To obtain a weak classifier hweak
j from a feature j, where

fj(x) evaluates this feature on the image x we model
the probability distribution of this feature for positive and
negative samples. Following [10] we incrementally estimate
the probability P (1|fj(x)) by assuming a Gauss distribution
N (µ+, σ+) (i.e. we incrementally update µ+ and σ+) for
positive labeled samples and P (−1|fj(x)) by N (µ−, σ−) for
negative labeled samples.

For the classic Haar Wavelets we use a Bayesian decision
criterion based on the estimated Gaussian probability density
function g(x|µ, σ).

hweak
j (x) = sign(P (1|fj(x))− P (−1|fj(x))) (6)

≈ sign(g(fj(x|µ+, σ+)− g(fj(x)|µ−, σ−)) (7)

For the histogram based feature types (orientation his-
tograms and LBP), we use a nearest neighbor learning algo-
rithm. The positive and negative samples are modeled by one
cluster each. The cluster center pj and nj are incrementally
updated. The weak classifier is given by

hweak
j (x) = sign(D(fj(x),pj)−D(fj(x),nj)) (8)

where D is a distance metric, in our case the Euclidian norm
is used.

Of course, other types and other learning algorithms can be
used to obtain a weak hypotheses.

D. Training and detection

The training process is performed by iteratively labeling
samples from the images and updating parameters for the
model. The labeled samples can be positive or negative. In
order to minimize the hand labeling effort we apply an active
learning strategy. The key idea is that the user has to label
only examples which are not classified correctly by the current
classifier. In fact, it has been shown in the active learning
community [27], that it is more effective to sample at the
current estimate of the decision boundary than the unknown
true boundary. This is exactly achieved by our approach. We
first evaluate the current classifier on an image. The human
supervisor labels additionally “informative” samples, e.g. mark
the wrongly labeled examples (i.e. either a false detection or a

missing one) and performs an update of the classifier. The new
classifier is applied again on a new (or the same) image and
the process continues. This is a fully supervised and interactive
process. The sketch of the on-line training process for car
detection as following:

Algorithm 1 On-line training process
Initialize parameters for the classifier
while non-stop-criteria do

Evaluate the current classifier and display results
Manually label one “good” sample (either positive or
negative)
Update parameters for the classifier

end while

The classifier is evaluated and updated after labeling each
sample. Since labeling of samples in training phase is an inter-
active process with visualization, we can intuitively choose to
label the most informative and discriminative sample at each
update. This allows the parameters of the model to be updated
in a greedy manner with respect to minimizing the detection
error, meaning that the parameters of the model can be learned
very fast. This process avoids labeling redundant samples that
do not contribute to the current decision boundery.

After training, detection is performed by applying the
trained classifier exhaustively on the images. A car is con-
sidered to be detected if the output confidence value of
the classifier is above a threshold (i.e. zero). The lower the
threshold the more likely an object is detected as a car but on
the other hand the more likely a false positive occurs. For a
higher threshold the false positives decreases at the expense
of the detections. This process delivers many overlapping
detections, which are the probabilities of the appearance of
an object at a certain location. Therefore a post processing
stage is needed to refine and combine these outputs, which
significantly improves the detection rate.

E. Post processing

Following the work of [9] we use a non-parametric
clustering-based object detection derived from the distribution
of classifier output probabilities. The strong classifier gener-
ates a probabilistic output. For each image location U we
obtain multiple outputs Pk representing object probabilities
(in our case the confidence conf(·) of the strong classifier)
at each angle k of the image. To obtain a distribution of
object probabilities at each rotation, we apply kernel density
estimation. Let {Ui}i=1,...,n denote the image locations where
classification is performed. For each angle k we obtain a
probability density estimate

p̂k(u) =
n∑

i=1

Pk(Ui) ·Kk

(
u− Ui

W

)
, (9)

where Kk is two-dimensional Gaussian kernel with a size
equivalent to the object size W and scaled by the confidence
of the classifier output. The derivative of the probability
density distribution is denoted as p̂c(u) =

∑
k p̂k(u). It

corresponds to a cumulative density estimate containing the
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sum of probabilities over all angles. Mean shift clustering is
applied to this density estimate to delineate the appearance
of objects. In our case, a simple version is used where K is
two-dimensional flat kernel.

F. Land Use Classification and Street Layer

In some applications the context information of aerial image
is given and can be used for further improvement of the
performance of the car detection system. In aerial images there
may be details in roofs, windows, etc. of buildings that look
like cars and may therefore lead to false detections. These
false detections can be eliminated by using the results from
other processing stages of the intepretation of the digital aerial
images [42], [16].

In this work, street layer, which contains road information,
can be obtained from land use classification process [42] for
further improvement of our system. The approach for land
use classification applies spectral classification techniques to
multi spectral digital aerial images with RGB and NIR (near
infrared) channels. A support vector machine is trained to
perform an initial classification based on these RGB and
NIR images. Additionally the height data generated after
aerial triangulation and dense matching are used in a second
classification step. The classification results are data layers for
streets, buildings, trees, low vegetation or water (for details
see [42]). In the context of car detection we are interested in
the street layer only. The street layer can be used as a site
model to mask the possible regions such as road or parking
lots, where cars may be located. This helps to reduce the
number of false positives.

III. EXPERIMENT AND RESULTS

The aim of our experiment is to demonstrate the robustness
of our framework for car detection from aerial images.

A. Data sets

In this paper we use two different datasets. Both datasets
were acquired by the UltraCamD camera from Vexcel wholly
owned by Microsoft Corporation. The high resolution panchro-
matic images - used for car detection, aerial triangulation and
dense matching - have a size of 11500 pixel across-track
and 7500 pixel along-track. The multi spectral low resolution
images - used in the initial step of land use classification
- have a size of 3680 × 2400 pixel. The first dataset was
acquired in the summer of 2005 from the city center of
Graz, Austria. It consists of 155 images flown in 5 strips.
The along-track overlap of this data set is 80%, the across-
track overlap is approximately 60%. The ground sampling
distance is approximately 8 cm. Therefore, a car is supposed
to capture approximatly 24 × 50 image pixels. The second
dataset was acquired in the winter of 2005 from the city
center of Philadelphia with the UltraCamD. It consists of 158
images with an along-track overlap of this data set is 90% and
an across-track overlap of approximately 60%. The ground
sampling distance is approximately 10 cm. The high overlap
was chosen to allow automatic aerial triangulation and dense
matching.

In this paper, only four typical subimages are taken from
these huge original data sets to form training and test sets.
Among them two images are from Graz city, the other two
are from the images of Philadelphia city. Each subimage has
a size of 4000 × 4000 . We use gray values of those images
for training and testing our framework. From now, we will
refer to the training set and test set to the sets of these
subimages, namely Graz and Philadelphia datasets. The test
sets are separated from the training sets. Each test set contains
324 and 1495 cars, respectively.

B. Training

Depending on the resolution of the aerial images, we can
choose the scale for image samples with a reasonable size.
Because we know the resolution of the original aerial images,
we can specify the rectangle for the subimage patches of cars.
The size of the patch has to be carefully chosen to cover
the area, which contains a car in the middle and four small
surrounding bands (see Figure 2(a)). This is done in order to
include some context information of a car so that the car is
considered together with its surrounding background. Usually
the boundary of a car is a rectangle with the length doubles
its width. In our case, we have chosen the patch size to be
35× 70 pixel. The patch size is set once and fixed before the
training process begins.

We start with a random classifier. The classifier is improved
on-line after labeling training samples by the user. Thus,
we make use of the advantages of active learning. During
the training process we have labeled 1420 training samples.
There are 410 positive samples, each sample contains a car,
and 1010 negative samples, each contains diverse background
image patches (for a few examples see Figure 2). This whole
interactive training process takes approximately 4 hours1. The
more informative the samples are the faster the system can
learn. This is true since our system is trained by an on-line
mechanism. Moreover, the training samples can be diversified
and adjusted during training process to capture the variances
of the real data. The number of positive samples is much less
than the number of negative samples we need to train the

1Since we are training on-line a classifier is available at each time. Thus
with fewer training examples an acceptable results can be obtained after about
2 hours. The longer the training (i.e. the more samples are labeled) the better
the performance will be

(a) (b)

Fig. 2. Example of positive (a) and negative (b) labeled training samples
during the on-line training process.
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system, which comes from the fact that the variability of the
background is much larger than the one of cars. In comparison
with other object (car) detection systems, our system needs
quite small number of image samples for training. As we
can see in Figure 3, after several iterations almost all cars
which have rather clear appearance and fit to the (angle of the)
detector are detected. Figure 4 depictes the detected objetcs
without refining step (a) and the detected points after applying
mean shift clustering (b). Figure 5 shows the continuous
improvement of the training classifier over time (i.e. number
of labeled training samples).

(a) (b)

(c) (d)

Fig. 3. Learning process: Improvement of classifier performance - (a)
original subimage, (b) result after training the classifier with only one positive
sample, (c) after training with 10 samples and (d) the final result without post
processing after training with 50 samples.

(a) (b)

Fig. 4. Postprocessing: (a) Raw output of the classifier applied on a subimage,
(b) after combing multiple detections by mean shift based clustering.

C. Performance evaluation

We show the results of our framework for the two data sets:
Graz dataset and Philadelphia dataset, each of which contains

Fig. 5. Learning curves versus number of training examples.

324 and 1495 cars, respectively. Figure 6 and Figure 8 shows
the result of car detection in several subimages. The subimages
show complicated backgrounds of urban scenes where cars
appear as small objects and there are many car-look-like
objects. The cars also appear in slightly different view angles,
different contrast, lighting condition, etc. Many cars are severe
occluded by buildings or trees, or over dominated by the
shadow of itself, or have very low contrast. As one can see, all
the cars with good features have been detected, even almost
all difficult ones could also be detected. For some cars which
are partly occluded, they might be detected, might be missed.
For some objects that look like cars, they might be reported as
cars but with low confidence value and have been removed at
post processing stage. The system also works well in dealing
with slightly different size of cars. We have trained our system
on samples of subimage patches of cars with a size of 35×70
and applied for both datasets of Graz and Philadelphia with
ground sampling distance is approximately 8 cm and 10 cm,
respectively.

For a quantitative evaluation, we use the common mea-
surement for object detection problem named recall-precision
curve (RPC) [2], with:

PR =
#TP

#TP + #FP
(10)

RR =
#TP

#TP + #FN
(11)

Fm =
2 ·RR · PR

RR + PR
(12)

(TP - true positives, FP - false positives, FN - false nega-
tives)

The precision rate (PR) shows how accurate we are at
predicting the positive class. The recall rate (RR) shows how
many of the total positive we are able to identify. The F-
measure (Fm) is the harmonic mean that can be considered as
trade-off between recall and precision.

For detection, there is always a trade-off between detection
rate and false alarm. The RPCs characterize the performance
of our framework on the two datasets are given in Figure 7. It
depicts the RPC curves of the Graz dataset and Philadelphia
dataset with the same parameters setting of the system. For a
comparison of the two datasets, we can see that the detector
has better performance on the Graz dataset regarding both
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Fig. 6. Experimental results of car detection in large aerial images (only
subimages are shown). Cars appear with different orientations and maybe
occluded in a highly complicated background. The red squares are output of
detector, yellow points represent correctly detected cars.

(a) (b)

Fig. 7. RPC curve of the system on Graz data set (a) and on Philadelphia
data set (b).

precision and recall rates. This is the consequence of the
differences in the the quality of the acquired images such as
the cleanness, the contrast, etc.

In some applications such as the estimation of traffic
flow, the coarse information of the site can be given, e.g.
road information. In our case, the street layer from land
use classification process is used for road verification. This
road information improves the detection performance of the
system by eliminating false positives. Figure 8 shows the
false detection elimination by using road mask. For a fair
comparison, beside the regular RPC curves, the RPC curves
which take into account site information are also given in
Figure 9. As we expected the performance of the system is
improved.

Due to the lack of public available datasets for the evaluation
of the system and different methods have been employed
for evaluation in related works, a fair comparison would be
difficult. Although a complete comparison is not met, we
claim that our experimental results show that, in general the
performance of our framework is superior in terms of the
detection rate, the robustness, and especially the efficiency

Fig. 8. False elimination: Objects on the roof which have been reported
as cars (left image) are removed by using road mask (right image). The red
squares are output of detector, yellow points represent correctly detected cars.

(a) (b)

Fig. 9. Increasing detection performance on the Graz (a) and Philadelphia
(b) datasets when including context information (street layer classification).

of automatic process on large scale aerial images [44], [12],
[13], [32], [41]. For the detection rate, for instance in [13],
result was reported on test data set which contains only 119
cars with the completeness about 80%. Even some related
works did not provide clearly their performance evaluation,
only some intuitive results were shown [35], [12]. There was
no report of related work on the performance evaluation of
their system on such large datasets, which have been acquired
in different imaging conditions (which are summer and winter
of different cities), different ground sampling distance, and
different imaging quality.

Our system is applicable for applications such as the
estimation of traffic flow, road verification to complete land
use classification or recovering surface texture for 3D map
generation from digital aerial images. On the other hand, if
the prior knowledge of the original image, such as context
information or road mask, is given the performance of the
system can be certainly improved .

* Exploiting the redundancy in the digital images
The high overlap of the UltraCamD images results in

high redundancy which can be exploited to improve the car
detection on no additional costs. A quote from [15]:

“The individual image trigger does not add any cost to
image acquisition. One can produce as many images within
a flight line as one wishes, with no added costs, and thus
increase the traditional forward overlap from 60% to 80% or
90%. One might even consider increasing the side-lap as well,
since the only cost increase would be for the additional flight
lines, not, however, for the images themselves.”

Given the ability of imaging, the high overlaps produce
multiple images for each ground point. This can be exploited
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Fig. 10. The utilizing of multiple overlaps images with different viewing
angles: objects (cars) that are occluded or invisible in one image (left images)
can be visible in other image and therefore can be detected (right images)

to get reduced occlusions due to buildings and vegetation for
objects (cars). By using this availability of redundant data, the
performance of our system can be further improved in a natural
way as more data is used. This integration of redundancy
provides superior results for certain applications. As one can
see in Figure 10, cars which are severe occluded by buildings
or trees in one image become visible in other image taken
on the same flight. These cars are missed detection in one
image but get detected in the other one. Some cars are totally
invisible in one image but appear clearly in the other one and
will for sure be detected, e.g two cars on the upper left of the
subimages on the right. One can think of any combination of
these detection results for further improvement of the proposed
system or to integrate with other applications. This visual
inspection significantly improves the performance of the car
detection system certainly with no additional imaging costs.
Therefore, for application such as estimation of transportation
flow or terrestrial texture restoration, the use of redundancy of
available data certainly makes sense. Since the establishment
of ground truth is a tedious work for overlapping images, we
have not yet statistically evaluated the improvement of using
redundancy.

IV. CONCLUSION AND FUTURE WORK

We have developed an efficient framework for automatic
car detection from aerial images. This is the first proposal to
use state-of-the-art machine learning technique, Adaboost, for
the detection of cars from large scale aerial images. We used
integral image for efficient representation and computation of
car features. Three types of features, Haar-like Viola-Jones,
orientation histogram and local binary pattern, have been used
for generating hypothesis for training the detector. Moreover,

a novel on-line version of boosting is used for efficient and
robust training of the developed system.

The system functions well in dealing with variances of
car appearances in complicated backgrounds of urban aerial
images. Experimental results show the superiority and the
applicability of our framework for applications including esti-
mation of transportation flow, road verification for completing
land use classification or help for restoring texture to complete
3D map generation from digital aerial images.

In principle, the framework can be trained and to detect any
object, which is suitable with the feature description.

For future work, the system can be improved and extended
with the following aspects:

• Including more data samples for training and diversifying
features for car’s representation, which would result in
improving the generalization of the detector and better
performance.

• Use information from aerial triangulation or dense match-
ing. Detect cars in multiple, overlapping images that
differ in their viewing angle and automatically combine
the results, which yields higher performance for the
system.
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