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Abstract

In this work, we present an approach for the automatic
discovery of workflows in industrial environments. In such
cluttered scenes, one faces many challenges, which limit the
use of state-of-the-art object detection and tracking meth-
ods. Instead we propose a purely data-driven method which
exploits the temporal structure of the workflow. Our robust
technique is free of human intervention and does not need
parameter tuning. We show results on two camera views
of a working cell in a car assembly line. Workflows are
extracted robustly, they match well across the camera views
and they are conform with human annotation. Furthermore,
we show a simple but efficient extension to analyze the im-
age stream in real time. This assures a smooth running of
the workflow and enables the notification of different types
of unexpected scenarios.

1. Introduction

Surveillance tasks are nowadays increasingly augmented
with vision systems and smart algorithms to extract infor-
mation or detect precise (abnormal) events. In this work,
we focus on the interpretation and analysis of industrial sce-
narios. Hereby, several challenges must be overcome, such
as unfavorable working conditions with dust, sparks or vi-
brations, cluttered background, diverse moving objects or
heavy occlusion of the workers. Additionally, the workers
look very similar, as they often wear utility uniforms. In this
context, one issue to monitor the smooth running of a work-
flow and detect any abnormal behavior. Deviations from
the workflow may cause severe deterioration of the product
quality or may raise safety or security hazards. Usually, the
(normal) workflow has to be defined beforehand, which is
done in an initial training phase with human intervention.

We propose a method to extract meaningful and inter-
pretable workflows in an completely unsupervised manner.
In order to overcome the involved challenges, we make use
of clear assumptions that hold for industrial scenarios, such
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as the repeated structure of the workflow. To the best of our
knowledge, we are the first to model workflows without any
human intervention during the discovery process.

With our simple yet effective technique, we examine
videos of an assembly line in a car manufacturing site. The
extracted workflows turn out to be consistent across dif-
ferent camera views and well interpretable, also compared
to independent human annotation. In addition, we analyze
several hours of video data in real-time, which allows us
to interpret the workflow, and reason on different abnormal
situations. In fact, the obtained statistics can be used in or-
der to optimize the workflow and enable a safe running of
the monitored assembly process.

The paper is organized as follows. In the next section, we
briefly outline relevant related work. The method is detailed
in Sec. 3, where we first show the automatic extraction of
a workflow and then its application for runtime analysis of
unseen video. The experiments in Sec. 4 underline the use
of our technique and paper is concluded in Sec. 5.

2. Related Work

The interpretation of a visual scene in order to extract
useful information without human intervention is a popu-
lar field of research. For example, sophisticated techniques
make use of specific constraints to discover object cate-
gories in images [5]. In video analysis, methods exist for
various tasks, such as to extract trajectories of tracked ob-
jects [13, 7], to interpret motion in public places [0, 4], to
learn human actions [11] or to model human activity pat-
terns [9]. Most of these works rely on robustly detected and
tracked agents in the scene. One step further, Zhou et al.
have proposed techniques to segment [ 1 8] and discover [17]
human actions or facial expressions. Their algorithms are
unsupervised, however, they need to pre-define the desired
number of states and require well defined features.

Relatively few work has been done for the analysis or
automatic extraction of workflows. Recent medical appli-
cations use computer vision techniques to monitor surgical
workflows [2, 12] in supervised settings. Due to the chal-
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Figure 1. In industrial environments, assembly tasks typically have a repeated cyclic structure. They are called workflows and consist
of several tasks. The number of tasks as well as the segmentation is unknown. The goal of this work is to extract the workflow in an
unsupervised manner and provide a simple yet effective analysis of industrial activity.

lenging conditions in industrial environments, sophisticated
image processing methods, such as the detection and track-
ing of objects or persons are hardly applicable. Approaches
which build on these techniques are very likely to fail in
practice. Hence, in the setting of industrial workflow mon-
itoring, Veres et al. [15] proposed to use a holistic scene
representation. The main drawback of all these approaches
however is their need for a manually pre-defined workflow
model and annotated tasks. They can only monitor, but not
discover workflows.

3. Automatic Workflow Discovery

Given an image stream from a video camera, we aim to
automatically discover the underlying workflow. No pre-
segmentation of the image stream nor any other supervision
is assumed to be available. Let us first define the following
terms used:

Task: A task corresponds to a (physical) action, such as to
pick up an object and place it somewhere.

Workflow: A workflow consists of a certain number of tasks
and their transitions.

The goal of workflow discovery is to extract a number
of N tasks T),, with n € {1,... N} and N unknown, that
represent the workflow observed in the scene.

3.1. Assumptions

As we aim for a widely applicable approach, we do not
rely on explicitly modeling or recognizing humans, actions,
or objects within the scene. Furthermore, we do not impose
restrictions on the camera viewpoint. Yet, we have noticed
some given factors that permit to set up assumptions con-
cerning the nature of the workflow. They are described in
the following.

Static camera: We assume that the workspace is monitored
by a static camera.

Image sequence: We assume the image sequence to be tem-

porally consistent, i.e., neighboring image frames are corre-
lated and are likely to share a common task label.

Cyclic workflow: We assume the workflow to have cyclic
layout, i.e., the tasks have always the same ordering and are
repeated.

In other words, we are looking for a cyclic workflow ob-
served by a video camera, as outlined in Fig. 1. These as-
sumptions are usually satisfied in industrial assembly lines,
where parts or goods are manufactured or assembled sys-
tematically in an identical and repetitive manner. In fact, it
is essential to produce in regular working cycles in order to
maximize output while reducing defects and wastes.

3.2. Workflow extraction

Our approach to the automatic discovery of a workflow
makes use of the above assumptions and consists of (i) noise
reduction for robust analysis, (ii) potential task spotting and
(iii) temporal refinement. The individual steps are described
in more detail in the following.

Noise reduction. The fact, that we are using a static
camera, allows us to use the complete image and extract
a holistic image representation. Given a sequence of im-
ages ; € R? we apply Principal Component Analysis
(PCA) [1] on the zero-mean input feature vectors &;. The
data is projected onto its eigenvectors, and these projec-
tions, sorted with respect to the eigenvalues, span a new
orthogonal space. In the first dimensions, maximal variance
of the initial data is encoded, while dimensions with small
eigenvalues most likely represent noise. We choose to se-
lect the npca < d first components in order to keep 80%
of the total variance. y, € R"?P¢4 is the projection of &
onto these components.

Identification of potential tasks. It has been shown very
recently that the temporal structure in image sequences pro-
vides a strong cue for learning representations [ 1 0]. Follow-
ing this approach, we first learn an embedding using Slow
Feature Analysis (SFA) that explores the temporal depen-



dencies in the data. Subsequently, we cluster the data in the
obtained lowdimensional subspace.

Extraction of invariant signals. SFA [16] is a technique
to automatically extract the invariant components in tem-
poral signals. The output signal z; of the SFA represents
the slowest components in y,, i.e., it minimizes the average
temporal variation:

min Jspa = minIE, (Az,), s.t. Var(Az,)

LM

where Az; = ||z; — z;_1||. With the model z; = w Ty, it
can then be shown [16] that the solution to the generalized
eigenvalue problem

Dw = A\Dw ()

verifies the criterion of Eq. (1), where D = FEq(y,y/)
is the covariance matrix of the data and D = Et((yt —
y;_1)(y; — y,_1)") is the covariance matrix of the tem-
poral differences. The slowest varying features z; are the
projections of y, onto the eigenvectors w associated to the
smallest eigenvalues A\. We select ngr 4 slowest dimensions
which span the SFA subspace.

In fact, it has been shown for time series data that SFA
yields the capacities of LDA if temporally adjacent sam-
ples are likely to belong to the same class and transitions
are sparse [8]. This is verified in our setting from the as-
sumption that a workflow consists of temporally consistent
tasks.

Fig. 2 depicts the first four slow features over time for
the industrial dataset used the experimental section of our
paper (c.f. Sec. 4). The repeated workflow structure can be
clearly observed.
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Figure 2. The four slowest features over time. The repetitive
structure of the workflow appears in the first dimensions of the
SFA subspace, whereas in higher dimensions, irregularities are en-
coded.

Please note, the slow features are extracted in an un-
supervised manner. So, it is possible, that slow features
also encode variations in the scene which do not belong
to the workflow of interest. This might be due to other

overlapping workflows (e.g., bringing goods to the work-
place), variations on a longer period of time (e.g., illumi-
nation changes), or other background motion. However, in
our experiments we did not observe such issues.'

Clustering. In the subspace of selected SFA components,
the tasks appear as clusters of datapoints. We choose to ap-
ply mean shift clustering [3] because of its robustness and
its capacity to discover nonlinear cluster structures. Further-
more, we do not need to manually fix the number of clusters
to extract.

Following the SFA subspace properties, we choose the
bandwidth of the mean shift kernel as the expected temporal
variations [E;(Az;). A two-dimensional SFA embedding
and the obtained cluster centers in black are shown in Fig. 3.
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Figure 3. Mean shift clustering in two-dimensional SFA space, the
initially detected 21 clusters (black) are refined to six final tasks
(red) in the workflow.

Temporal refinement. Like the original data, the measure-
ments in SFA space are always affected with noise. Based
on the assumption of temporal consistency and of a cyclic
workflow, we apply the following refinement steps:

Task duration: Tasks are required have a certain duration.
Therefore, very short tasks which only consist of a few im-
ages are considered as noise (outliers) and are removed. In
practice, we eliminate all clusters which are shorter than 5
seconds.

Cyclic workflow: By analyzing the task transitions, a cyclic
workflow is enforced. Tasks are merged if they jitter or if
they yield splits in the workflow.

In more detail, two tasks T; and T are said to jitter and
are merged if

where P(T;|Tj) is the transition probability from T to T;
obtained from the clustered data. © is a small user defined
threshold, we used © = 0.1 for all experiments.

I'Would such ambiguities appear, a similar method as in [4] could be
employed. They use prior knowledge (breathing frequency) to select the
desired SFA components for a medical application. So, we might use the
desired length of a working cycle.



The assumption of a cyclic workflow implies a unique
path, i.e., from one task 7}, only one dominant transition is
allowed. Hence, we merge two tasks T; and T if

P(T;|Ty;) > © A P(T;|Ty) > ©. 4)

To illustrate this procedure, exemplary task transition
matrices before and after imposing the cyclic workflow
layout are depicted in Fig. 4. The centers of the finally
emerged tasks (clusters in the SFA subspace) are marked
red in Fig. 3.
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Figure 4. Transition probabilities between the tasks: (a) after elim-
ination of small (temporally short) tasks, (b) after imposing a
cyclic workflow structure.

Model selection. In many subspace problems, it is unclear
how to select the optimal number of latent dimensions. We
propose to estimate this model complexity from the result-
ing number of tasks.

If a small number of dimensions is chosen, only few
clusters emerge and the model of the working cycle might
be overly simple with very general tasks. On the other hand,
if we select more dimensions, many detailed states are iden-
tified, but they might degenerate and not fulfill the cyclic
workflow assumption. Hence, these states are merged dur-
ing refinement, which results again in a small number of
final tasks. This said, we sweep over dimensionalities and
choose the subspace such that the number of tasks in the
workflow is maximized. This intuition is verified in Tab. 1,
where the number of clusters (tasks) are indicated before
and after refinement. In this case, we select the SFA sub-
space to be 2-dimensional (nsp4 = 2) and the discovered
workflow comprehends six tasks.

| SFA dimensionality |1 2 3 4 5 6 |

# of initial clusters 8§ 22 39 84 135 170
# of long tasks 6 11 13 13 12 12
# of final cyclic tasks | 3 6 6 5 4 4

Table 1. Number of initially detected clusters, and discovered tasks
as a function of the SFA subspace dimensionality. In this example,
a two-dimensional representation is selected.

3.3. Analysis of unseen sequences

The analysis of new videos can provide statistical infor-
mation on the tasks carried out, or it enables the detection
of abnormalities in the observations.

Task classification. Our workflow discovery technique
provides task labels to the initially unlabeled image se-
quence. With this information, any supervised classifica-
tion method can be trained. In the following we show a
very simple implementation.”

Training. Task classification is an multi-class classifica-
tion problem. After PCA preprocessing, we opt to learn a
representation of the labeled training data using Linear Dis-
criminant Analysis (LDA) [1]. The LDA subspace, shown
in Fig. 5, is discriminative and arranges the data in compact
clusters C.

20

Figure 5. The six established tasks form compact clusters in the
LDA space. At runtime, images are analyzed in this space

Runtime. At runtime, an image « is first projected into the
LDA space to «’. Then, the closest cluster center ¢ € C
determines the task label, i.e.,

T*(z') = argmin ||z" — ¢||». (5)
ceC

Anomaly detection. Three types of abnormalities can be
detected with this simple model:

Appearance: Images which cannot be well assigned to any
of the established clusters are considered as abnormal. This
might be due to camera failures, large movements of the
cameras or abnormal incidents in scene. To this end, we use
the reconstruction error of the PCA model from the prepro-
cessing step.

Sequence: The learned task sequence in the workflow
should also be respected at runtime. If the task order
changes, or a task is skipped, a problem can be signaled.

Timing: Each task is carried out for a certain duration. If
the observed duration differs significantly from the trained
one, a manufacturing issue might have occurred in this task.

2More sophisticated models, e.g., using Hidden Markov Models, could
certainly be learned, but do not fall within the focus of this paper.



(a) Side view

(b) Overhead view

Figure 6. Automatically discovered cyclic workflows for the two camera views. The tasks are indicated with their mean images and the

transitions are shown.

4. Experiments

Dataset. For our experiments, we use the data which was
recorded in the SCOVIS project.” The data is recorded in
a car manufacturing facility and the sequences show close
views of an assembly area. Two camera views are provided,
the first one monitors the working cell from the side and the
second one is mounted overhead. The RGB-colored frames
have a resolution of 704 x 576 pixels and are recorded at a
framerate of 18 — 25 fps. For the side view camera, record-
ings were made for approximately 1.5 working days.

Preprocessing. As input to our workflow analysis we con-
vert the images to grayscale, downscale them by a factor of
8 (88 x 72) and finally reshape them to a 6336-dimensional
feature vector. In all our experiments, we only analyze ev-
ery 15" frame.

4.1. Discovered workflows

We use the first hour of recordings for both camera views
to apply our proposed automatic workflow discovery algo-
rithm. The algorithm chooses in both cases a 2-dimensional
SFA embedding. Details for the side view have been shown
already as illustrative example in Sec. 3. In addition, the
temporal sequence of tasks is shown in Fig. 7.*

Finally, the established workflows for the side view and
the overhead view are depicted in Fig. 6 (a) and (b), respec-

3www.scovis.eu, 374 SCOVIS industrial dataset (shared upon our

request and publicly available soon).

4The assignment of an index to a task is not necessarily in the order
of the workflow due to the unsupervised clustering. However, if one likes,
this can easily be done by switching the indices.
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Figure 7. Sequence of matched clusters over time for an extract

of the side view recordings in the discovery phase (also see the
transition matrix in Fig. 4 (b)).

[ Manual task description | Side [Overhead|

Two workers are putting a number of
small spare parts (8§ components) [...]
Also they carry 2 big spare parts

in the same table.

They are providing welding of the
spare parts on the table construction.
One of them is manipulating and
drives a yellow crane for taking the Tss Toa
skeleton of the car in another plant.
This is the end of the workflow.
The table plant is empty again and Ts3 Tor
the workers start again [...].

Tso |To1, To2

Ts¢, Tsa | Tos, Tos

Tsq Tos

Table 2. Comparison of our automatically detected workflow tasks
with manual annotations.
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tively. Tasks are represented by their mean images and are
connected with directed arrows. The small images next to
the arrows depict the average variations of the image inten-
sities from one task to the next. Each task is numbered with
the according task index.

For the side view, six tasks are discovered, whereas for
the overhead view, seven tasks are found. It appears that
the tasks correspond well between the two viewpoints. All
tasks have its relative counterparts in the other view except
for Tp1 and T2, which are merged in the side view to Tss.
This is probably caused by the fact that the assembly of
the different small spare parts is not very distinctive in the
side view. Therefore, a single task is discovered, whereas in
the overhead view, this placement is split into two separate
tasks.

4.2. Comparison to manual annotation

A video extract of several workflow repetitions was
viewed by an uninvolved person in order to describe the
observed workflow in words. In Tab. 2 the annotated tasks
are described and the reference is given for the two camera
views. The automatically discovered tasks correspond very
well to the tasks described by the human. Hence, the pro-
posed technique is able to automatically extract tasks in a
cyclic workflow, which are meaningful to human observers.

4.3. Runtime processing

For the side view camera, we apply the established work-
flow model on the recordings of the full day, i.e. approx-
imately 40,000 frames. Fig. 8 (a) depicts the tasks over
time. Fig. 8 (b) and (c) show zooms of the long sequence,
such that details become visible.

Statistics. In regular working cycles, the tasks are executed
at regular speeds. Hence it is interesting to estimate the
duration of each task from the data. A boxplot of timings for
each task is shown in Fig. 9. Ts4 and Ts¢ for example, are
short and very regular. They correspond to the placement
of the first and second long metallic bar, respectively. In the
long task Ts; all the metallic parts are welded together. T's5
has a very variable timing. In this task, the assembled parts
are delivered with a crane to another plant. Since it depends
on the advancement of neighboring working cells, pauses
occur in this task and its timing seems unpredictable.

Runtime. Since we only perform linear operations on the
input features to project them into subspaces, the proposed
analysis technique is very efficient. The actual algorithm
runs at more than 25 fps on a standard PC using our MAT-
LAB implementation.

4.4. Anomaly detection

During the runtime processing, several interesting cases
are detected automatically:
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Figure 9. Boxplot for the duration of the extracted tasks. Please
note that for better visibility, the y-axis is bounded, and not all
outliers (crosses) are shown.
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(c) Shift change; ©)

(d) Cleaning, @
Figure 10. Abnormal appearance (a) and abnormal timing (b)-(d)
is detected automatically in the analyzed video.

Appearance. Fig. 10 (a) shows an exemplary abnormal
event, which is detected because the image appearance does
not apply well to any cluster. In this image, welding sparks
appear at a very abnormal location, and we can suspect
something abnormal going on here.

Timing. From the duration statistics in Fig. 9, abnormal
timings of tasks can be identified. Three such cases are
shown in Fig. 10 (b), (c) and (d). They correspond to the
markers ), 3 and @ in the plots in Fig. 8, respectively
and shows a work break at an unnatural instant within the
working cycle, a worker shift change and a break for clean-
ing of the production space.

Sequence. During the analyzed work day, the sequential
pattern of executed tasks changes. This appears from the
comparison of markers () and (5 in Fig. 8. A closer look
is provided in Fig. 11, where it can be seen that two tasks
are interchanged. During the workflow discovery process
in the morning, the long metallic bar was first placed on
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Figure 8. Analysis of unseen data with the learned workflow model. The matched tasks are plotted over time. One working day of video is
analyzed and different anomalies are spotted. The markers refer to the descriptions in the text and Fig. 10 and 11.

the left, then on the right. Later on however, this learned
cyclic structure of the workflow is no longer respected. The
modification occurs right after the change of shift (marker
(). Apparently, the workers in the afternoon shift prefer
to invert the order of the placement. This is not a critical
issue here, but it could have been one. Nevertheless If the
workflow discovery algorithm is run for a longer period of
time, our approach will respect this task switch and will
merge those two clusters. This would also be in line with
the human interpretation of Tab. 2.

(a) morning shift O (b) afternoon shift )
Figure 11. Inverted tasks for morning (a) and afternoon shift (b).
The placement order of the two long metallic bars is switched.

4.5. Discussion

As has been shown, our proposed algorithm is able to au-
tomatically extract meaningfull workflows. But what infor-
mation in the images is really used? Since SFA is used in the
discovery process, the structure of the embedding provides
some information. The first two Eigenimages obtained by
SFA projection are depicted in Fig. 12. As can be seen, the
variance encodes the motion on the assembly table, which
can be interpreted as the presence or absence of the parts.
In contrast to many other methods which detect and track
people, our approach does not focus on humans. The work-
ers might even be considered as noise with respect to the
entire workflow. Admittedly, they are somehow implicitly
modeled, since they are necessary to bring the parts along.

We point out that this is not a general claim, but surly
depends on the actual scenario. For another working cell,
a person or other objects would well define the workflow.
Due to the general structure of our data-driven algorithm,
they would be picked up automatically in such cases. In
summary, our algorithm chooses to model the workflow in
the easiest possible way and respects the assumptions.

(b) second Eigenimage
Figure 12. Eigenimages of SFA (gray values corresponds to zeros,
black to negative values and white to positive values). High vari-
ance is found on the assembly table, which can be interpreted as
the presence or absence of parts.

(a) first Eigenimage



5. Conclusion

In this work we presented a complete and automatic
workflow discovery method. Exploiting the assumptions of
temporal consistency and cyclic repeated patterns, we an-
alyze the temporal structure of the image sequence. With-
out human interaction nor parameter tuning, cyclic work-
flows can be extracted robustly. The approach is tested on
videos from two camera viewpoints and recorded within a
challenging industrial environment. The discovered work-
flows match very well with human interpretations. We have
shown that the discovered model can be used to obtain
statistics, to optimize the workflow as well as for abnor-
mality detection.
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