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Figure 1: In videos, each frame strongly correlates with its neighbors. Our approach exploits this fact
and enables the segmentation of the video and the interpretation of unseen sequences.

Abstract

Temporal consistency is a strong cue in continuous data streams and especially in
videos. We exploit this concept and encode temporal relations between consecutive
frames using discriminative slow feature analysis. Activities are automatically segmented
and represented in a hierarchical coarse to fine structure. Simultaneously, they are mod-
eled in a generative manner, in order to analyze unseen data. This analysis supports the
detection of previously learned activities and of abnormal, novel patterns. Our technique
is purely data-driven and feature-independent. Experiments validate the approach in sev-
eral contexts, such as traffic flow analysis and the monitoring of human behavior. The
results are competitive with the state-of-the-art in all cases.

1 Introduction
The analysis of activities from videos is important to solvemay and diverse tasks (see [5,
10] for surveys). In most systems expert knowledge is required to train specific models
with labeled data. Arguably, a one-time training process cannot anticipate all the possible
activities, and the monitored setups may vary considerably. Hence, recent research tries to
build or adapt such models automatically and in an unsupervised manner.

In previous works, human actions [12] or surveillance scenes [4, 8, 18] are analyzed
automatically for the extraction of topics from spatio-temporal words. Their goal is to find
correlated motion in order to segment behavior in space and time. Other approaches to
video summarization [15, 22] cluster video streams into repeated activities. Trained models
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can further be used to analyze unseen behavior. In such approaches, abnormal events are
often detected as outliers. This has been successfully applied to traffic monitoring [4, 6], the
surveillance of public places [1], assisted living [11] or the analysis of motion patterns [14].
However, these methods often suffer from either (i) strong constraints which limit their use to
specific applications, (ii) the need for prior knowledge (e.g., the number of activities) and/or,
(iii) being too abstract for easy interpretation.

In order to overcome these limitations, we seek for an ’invariant characteristic’ that can
underpin generic model building and reasoning. Observing the different sequences in Fig. 1,
increments between frames are quite small compared to the changes throughout the whole
sequence. For instance, the behavior of a tracked person (2nd row) is composed of a certain
repertoire of activities with transitions in between that are typically short in comparison.
This can also be observed at larger scales, like day-night changes or seasonal changes (3rd

and 4th row) and already suggests a hierarchical structure.

The contributions of this paper are twofold:
• We propose an unsupervised technique to segment the data into compact and mean-

ingful activities. To this end, we explore the strong temporal relations in the video
(Sec. 2). The automatically discovered activities are efficiently represented and con-
tinuously refined in a hierarchical manner (Sec. 3).

• Analysis and interpretation of unseen data is demonstrated as a result of the coarse
to fine representation in the hierarchy that enables abnormal event detection (Sec. 4).
Anomalies can be spotted, such as the big tent in a street festival (3rd row in Fig. 1).

Experimental results, presented in Sec. 5 for different video surveillance scenarios, show
the usefulness and generality of the technique. We demonstrate activity segmentation, the
surveillance of public places, as well as the detection of abnormalities in indoor scenarios.

2 Activities in data streams
Due to the large variety of observations in a data stream, it often is difficult to build a single
model which describes the data and its dynamic behavior precisely. In this work, we auto-
matically split the data stream into meaningful subsequences. We call these subsequences
activities. If they are consistent and have low complexity, they can be represented more eas-
ily and precisely. This principle is exploited by arranging the video data in a hierarchical
manner as outlined in Fig. 2. In a long data-stream, some activities may be very distinct

Figure 2: Overview of the proposed hierarchical model that splits and represents the data in
a coarse to fine manner. As an example, we consider indoor actions. At the top node, the
entire video stream is taken into account, while at lower levels, more specific concepts, like
picking up, or walking leftwards are found.

Citation
Citation
{Hospedales, Gong, and Xiang} 2009

Citation
Citation
{Hu, Xiao, Fu, Xie, Tan, and Maybank} 2006

Citation
Citation
{Adam, Rivlin, Shimshoni, and Reinitz} 2008

Citation
Citation
{Nater, Grabner, and {Van Gool}} 2010

Citation
Citation
{Stauffer and Grimson} 2000



F. NATER, H. GRABNER, L. VAN GOOL: TEMPORAL RELATIONS IN VIDEOS 3

and can be segmented high up, while more subtle differences only appear deeper down. The
concept is similar to motion segments in [13] or micro-actions in [11], but we do not restrict
ourselves to human actions.

In order to build up such a hierarchy, we exploit the strong link between temporally
adjacent observations in videos. Hence, activities are characterized to have a certain duration,
to be observed frequently, and to be interconnected by shorter transitions. In other words,
with high probability, neighboring frames share their activity label. The advantages of our
approach are:
Definition of activities. Activities are automatically explored from their temporal character-
istics based on discriminative modeling techniques. No prior knowledge on the boundaries
or the total number or activities is required.
General vs. specific. The dilemma between generalization capacity and precision of the
model is naturally handled in the hierarchy. Nodes higher up in our hierarchical model are
general and represent a broad variety of activities (e.g., ’an object is moving’), whereas lower
nodes only incorporate very specific activity patterns (e.g., ’a person walking to the right’).
Interpretation. If the model is applied to new, unseen data at runtime, the search through
the hierarchy is not only more efficient, it also allows conclusions about the nature of the
unseen data. In particular, a new observation can either be assigned to a known activity or is
recognized as outlier at a certain level in the hierarchy.

In the following section, we show how we establish such a hierarchical activity model.

3 Activity summarization
Our approach is inspired by the principle of invariant or slowly varying features. Wiskott
and Sejnowski [21] have proposed Slow Feature Analysis (SFA) as an unsupervised learning
technique for continuous data streams, inspired by human learning capacities. Recently,
Klampfl and Maass [7] have shown that SFA yields the classification capacities of Fisher’s
Linear Discriminant, if temporally adjacent samples in the data stream are likely to belong to
the same class. This requirement is fulfilled in our setting, as we analyze continuous streams
of images and assume that activities therein are performed over a certain time span.

Given an image stream, S = {I1, I2, . . . , IT} of T images, It ∈ IRn×m, each image It is
represented by a D-dimensional feature vector fff t ∈ IRD. As our experiments will show,
various feature representations can be used.

3.1 Data segmentation
In the segmentation step, the goal is to split the data stream into its composing activities. A
broader set of activities is partitioned into subsets.

Slow Feature Analysis. The output signal zzzt of the Slow Feature Analysis represents the
slowest components in fff t , i.e., it minimizes the average temporal variation:

minJSFA = minEt(∆zzzt), where ∆zzzt = ||zzzt − zzzt−1||2. (1)

To avoid the trivial solution zzz ≡ 0, additional constraints for zero mean and unit variance
are introduced. Multiple slow features need to be decorrelated and they are ordered by
decreasing slowness.

Let yyyt = fff t −Et( fff t) be the zero-mean feature vector. Considering only linear functions
of the form zzz = wwwTyyy, it can be shown [20] that the objective becomes

minJSFA(www) :=
wwwTḊDDwww
wwwTDDDwww

, (2)
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where DDD = Et(yyytttyyyttt
T) is the covariance matrix of the data and ḊDD = Et

(
(yyyttt − yyyt−1)(yyyttt −

yyyt−1)T
)

the covariance matrix of the temporal differences. The weight vectors www which
minimize Eq. (2) are the solutions to the generalized eigenvalue problem Ḋwww = λDDDwww. The
slowest varying components in yyy are their projections onto the eigenvectors www associated to
the smallest eigenvalues λ [20].

Clustering. In the SFA subspace, distinct activities are discriminatively mapped to distinct
high density regions with sparse transitions [7]. Hence, we apply Gaussian Mixture Model
(GMM) clustering to separate the activities. By means of expectation maximization, the
regions where the data is densely scattered are found. The cluster index assigned to a data
point corresponds to the cluster number with maximal posterior probability [2]. Initialization
is done with k-means. Since the desired number of clusters is not known a priori, a sweep
over k is performed and the sum of posterior probabilities over all datapoints is calculated.
The second derivative of this sum characterizes the curvature and we select its maximum
as the desired number of clusters. A postprocessing step ensures temporal smoothness and
discards very short sequences.

3.2 Building the activity hierarchy
The segmentation is applied recursively on the data. In the first step, we split according to
the most dominant (slowest) cues in the entire datastream. In order to create a hierarchy, the
segmentation process is repeated for each obtained subset and other discriminative compo-
nents may now appear. This is encouraged since we keep the dimensionality dSFA � D of
the SFA subspace fixed. At high levels, the established nodes T j

i (node i on level j) contain
very broad activity concepts while at lower levels in the hierarchy, specific actions are found.

Basic activities. The decision whether or not a node is further refined is based on the
representation in the SFA space. The data is projected so that the average distance between
consecutive samples is minimized, c.f. Eq. (1). If the distances are approximately equal
across the whole sequence, the data is well described by its slowest components [21]. In this
case, we define a basic activity A and the data is not split any further. This corresponds to a
leaf node in the hierarchy. On the other hand, if major parts of the data are connected with
short distances in the subspace, there must be a few consecutive samples which lie far apart,
such that the unit variance constraint is fulfilled. This case is consistent with the assumption
of [7], hence, splitting the data is stimulated.

As a simple measure of data compactness, we use the median of distances between con-
secutive samples in the SFA space. It turns out to be robust against outliers, and reflects well
the concept above. If we measure a small median value, the data is further segmented. For a
larger median, a basic activity A is detected.

Illustration. To get an intuition, we now discuss our activity detection technique with
respect to the dataset from Turaga et al. [15] and show how our results compare. We use
silhouette data from two views as provided by the authors, apply a distance transform and
concatenate the rows to one feature vector. The data exhibits five actions (throw, bend, squat,
bat, pick phone). Each of them is repeated ten times with different execution speeds. We
randomly permutate the actions and the repetitions in order to form the input video.

In Fig. 3(a), the first two dimensions of the clustered SFA subspace (dSFA = 3) are dis-
played. It is obtained at the root node, where all five actions are included. The sketched
hierarchy shows that four basic activities are extracted at the first split. The pink node is
subdivided further, yielding two more basic activities. In Fig. 3(b) the stopping criterion is
verified. The empirical distributions of distances ∆zzzt and their medians are shown. For nodes
T 1

1 and T 2
5 , the shift of the mode towards the origin suggests to further split these nodes.
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Figure 3: (a) GMM clustering in the SFA subspace, viewed in two dimensions. The resulting
activity hierarchy is sketched. (b) Splitting criterion based on the distribution of distances
between consecutive samples in the SFA space. For basic activities, the median is higher,
and they are not further segmented.

2
(.05)

10
(.58)

0 0 0 0 10
(.37)

3
(.01)

0 0 0 0 10
(.99)

1
(.00)

3
(.01)

0 10
(.60)

0 0 0 10
(.37)

8
(.07)

0 0 10
(.61)

0 0 10
(.32)

10
(.17)

0 0 0 10
(.57)

0 9
(.26)

A0 A1 A2 A3 A4 A5 A6
Throw
Bend
Squat
Bat
Phone

(a) Confusion matrix

Automatically discovered activities

Ground truth activities

(b) Temporal activity segmentation
Figure 4: (a) Automatically discovered basic activities (A0−A6) vs. the ground truth, (b)
Color coded labeling for the discovered and the ground truth actions (see text for details).

We automatically discovered six basic activities (A1−A6). The samples that were fil-
tered out during clustering (short sequences and outliers) are collected in A0. From the
results reported in Fig. 4, one can notice that activities A1−A5 match the five ground-truth
actions as defined by Turaga et al. [15]. A6 corresponds to standing still, as observed at the
beginning and the end of each action, but not annotated in the ground-truth. The confusion
matrix in Fig. 4(a) is obtained from the compositions of the ground truth snippets as in [15]
and we outperform their results. The proportion of the discovered activities with respect to
the total number of frames is reported in brackets. Since standing still is not included in the
ground-truth annotation, this difference obviously lowers the values. In Fig. 4(b) the tempo-
ral evolution of discovered and ground truth activities are depicted for half of the sequence.

3.3 Data modeling
As we want to use the hierarchy to classify the activities in previously unseen videos, the data
underlying each of its nodes is additionally modeled with respect to shape and dynamics.
Biological studies on human motion perception suggest that motion analysis is performed
from sequences of appearance snapshots [9]. Similarly, we create an extended feature vec-
tor vvvt = ( fff t , fff t−1, . . . fff t−n)T as the concatenation of the last n feature representations, like
in [16]. We model the zero-mean feature vector xxxt = vvvt −Et(vvvt) by means of PCA.

The data in each node T j
i in the activity hierarchy is represented with the model M j

i in
a PCA space with a fixed number of dimensions dPCA � D. When moving down in the
hierarchy, the data in each node describes more specific activity concepts. Likewise, the
models naturally are more general at the top of the hierarchy and more precise at leaf nodes,
as sketched in Fig. 2. At the leaf nodes, each basic activity A is described by model MA.
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4 Analysis of unseen data
We now show how the hierarchical model efficiently detects known activities and signals
anomalies that may occur in unseen data.

4.1 Activity detection
Given a new sequence xxx′ and a set of basic activities A , the task is to identify A ∈A , which
best explains the data. To this end, xxx′ is projected into the PCA subspaces and the reconstruc-
tion errors are calculated. The leaf node model MA with be lowest reconstruction error eMA
determines the discovered activity A? = argminA eMA(xxx′). The hierarchical arrangement of
nodes makes sure that not all PCA models need to be tested, as discussed in the next section.

Simultaneous target localization and activity detection. In certain applications, only a
sub-region of the entire scene might be considered. For example, if the actions of a person
are analyzed, the features will only describe this person but not the surroundings. In order
to correctly detect the performed activity, this sub-region needs to be localized correctly. We
opt to integrate the search for an optimal location in the previous formulation for activity
detection. At various image locations ρ (including scale), the reconstruction error eMA(xxx′|ρ)
is determined for the activity A. If we evaluate multiple activities, the optimal location
and activity are found simultaneously, i.e., (ρ?,A?) = argminA,ρ eMA(xxx′|ρ). For efficiency
reasons and since temporal consistency is assumed, only the local neighborhood of ρ∗t−1 (the
location at the previous timestep) is scanned. This is usually referred to as tracking.

4.2 Exploiting the hierarchy
We now show how the hierarchical model paves the way for a more sophisticated and effi-
cient analysis. Since the hierarchy consists of a set of more general and more specific models,
we can apply the anomaly reasoning as proposed in [19]. To this end, we first need to deter-
mine if an observation is well described by a certain node in the hierarchy. A node T j

i with
model M j

i is considered active for an observation xxx′ based on its normalized reconstruction
error:

active(T j
i ) =

 1 if
eM j

i
(xxx′)−µM j

i

σM j
i

< θ

0 otherwise

, (3)

where µM j
i

and σM j
i

are respectively the mean and the standard deviation of the reconstruc-
tion error for model M j

i , obtained from the training data. θ is a user-defined threshold.
To respect the hierarchy, each observation is propagated from the root node to the leaves

as sketched in Fig. 5(a). Only subnodes of active nodes need to be considered, which in-

(a) Valid activity (b) Abnormal at level 3
Figure 5: Use of the hierarchical model for the interpretation of unseen data. (a) A known
activity is detected for an active leaf node. (b) A reasoning on abnormal conditions in the
hierarchy is deduced from active and inactive nodes on different levels.
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(a) Obtained basic activities: Driving left to right, right to left, straight, straight and turn right
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(b) Activities over time at the first two levels in the hierarchy

(c) Anomalies: Ambulance, collision course, wrong direction, unseen configuration)
Figure 6: Activities, their temporal variation and detected anomalies for the QMU junc-
tion [4]. Regions with high reconstruction error are shaded in red (best viewed in color).

creases the efficiency. As long as the observations are according to expectations, there is
always a leaf node (i.e. basic activity) which is able to explain the data.

If a more general node validates the observation, but none of its more specific sub-nodes
does, then this signals an abnormal activity (Fig. 5(b)). Such abnormality can occur at any
level. From the location in the hierarchy where this happens, interpretations about the nature
of the abnormality can be made.

5 Experiments
Parameters. At training, an initial noise reduction step is applied to keep 95% of the data
variance in each node. Subsequently, SFA and PCA subspaces are modeled with dSFA = 3
and dPCA = 3 dimensions. For motion encoding, n = 5 last frames are used. At test, the
threshold θ = 3 is applied for hierarchical reasoning.

Runtime. Due to its low complexity, the analysis is practicable in real-time. On a standard
PC, our current matlab implementation runs at more than 12 frames per second. The exhaus-
tive search in the case of target localization slows down the evaluation by approximately a
factor of 10. Model building takes in the order of a few minutes for our cases.

5.1 Surveillance of public places
We show how our technique performs on two different visual surveillance datasets using
holistic scene descriptors.

QMU junction [4]. (360× 288 pixels, 25 fps, 1 hour). This data has previously been
used for learning spatio-temporal scene topics [4]. As car and pedestrian flow patterns are
of importance in this scene, we apply the motion features proposed in [17] and extract the
motion in 18× 18 pixel patches. To additionally encode the motion direction, a forgetting
rate of 0.95 is applied. Training is done on 50,000 images, the runtime evaluation takes into
account all 90,000 frames.
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Figure 7: Part of the obtained tree with interpreted activities for the Times Square dataset [3].

Figure 8: Automatically detected anomalies: Heavy rain, festival tent, shadow shape, parked
trucks; camera failure, jam with reflections, strong light, camera moved.

The learning procedure extracts 48 nodes of which 19 are leafs. Some of these dis-
covered basic activities are depicted in Fig. 6(a). The hierarchical analysis nicely groups
co-occurring traffic patterns in leaf nodes. Further basic activities summarize streets with
only pedestrian motion, cars accelerating, and different turn configurations. In Fig. 6(b) we
show the obtained activity segmentation over time, for the second and third level in the hi-
erarchy. Without enforcing any larger scale temporal relations, we discover pseudo-repeated
patterns in the data that correspond to different phases in traffic light cycles.

Four examples of abnormal situations are presented in Fig. 6(c), the ambulance and the
wrong driving direction have also been reported in [4]. Since we use a holistic scene descrip-
tor, unseen configurations, like the collision course, are also reported as abnormal. Among
all the detected abnormal events, there are hardly any that have no plausible interpretation.

Times Square [3]. (640× 480 pixels, approximately 0.3 fps, 2 months). In this dataset,
images from a webcam overseeing Times Square in New York are taken at low frame rate
over a long period. Hence, the relation between adjacent frames is on a larger time scale. We
downsample the original color images to 24×32 pixel grayscale images and concatenate the
rows to a vector. Due to the low frame rate, no motion is included (n = 1).

The hierarchical model was constructed with data from 17 days (150,000 images, every
3rd image). The obtained hierarchy has 65 nodes, thereof 26 basic activities. In Fig. 7,
we display the tree-like structure for the first four levels, and show typical instances of some
nodes, together with their interpretation. Day-night changes turn out to be the most dominant
cues, which are separated in the first step.

In Fig. 8 we show eight illustrative abnormal events that are detected among more than
250,000 evaluated frames. We detect similar anomalies as reported in [3], such as the ones
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(a) Automatically learned hierarchy
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(b) RPC for abnormal event detection

(c) Selected frames: 1. Walk leftwards, 2. Sit, 3. Walk occluded, 4. Fall, 5. Wave heavily.
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(d) Detected activities over time with the activity number as in panel (a). A0 corresponds to an anomaly
Figure 9: In-house dataset [11]: (a) Nine basic activities emerged from training, (b) Applied
to a test video that contains anomalies, our approach outperforms previous state-of-the-art.
(c) Sample frames which illustrate detected familiar activities and abnormal events. (d) The
detected activities are reported over time and the location of frames 1−5 is indicated.

in the first line of Fig. 8. In addition, the system also reported many cases of incomplete
frames, camera failures, water on the lens and other salient situations.

5.2 Human behavior analysis
In this task a person is being tracked throughout the video and simultaneously his behavior is
analyzed. We use the data from our previous work [11], motivated for monitoring of elderly
people. The same silhouette features are used. Images of 640× 480 pixels are recorded
at 15 fps. The training sequence seq1 (7,100 frames) contains normal daily activities. The
evaluation is carried out on the test sequence seq2 (1,030 frames) that also contains abnormal
events such as a fall.

The hierarchy obtained form seq1 is visualized in Fig. 9(a), and for each leaf node ac-
tivity, some silhouettes are shown. The hierarchy nicely encodes the different aspects of
behavior observed in this video. At higher levels, it distinguishes between upright and other
poses, at low levels, sitting, picking up, walking leftwards or rightwards are isolated. Hence,
meaningful human activities are discovered automatically.

The model is applied to seq2. In Fig. 9(c) some selected frames of are displayed, they
show three normal situations and two detected anomalies. The observed person is tracked
and the matching activity is determined simultaneously. The plot in Fig. 9(d) characterizes
the evolution of the detected basic activity over time. A0 groups the outliers.

We quantitatively compare the overall performance of our technique to the results of [11].
The recall-precision curve is obtained by sweeping the parameter θ (see Eq. 3) and displayed
in Fig. 9(b). We outperform the previous state-of-the-art. Due to the integration of temporal
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relations, the discovered activity models turn out to be more accurate compared to k-means
clustering in [11]. In particular the recall is increased from 68% to approximately 83% at
99% precision.

6 Conclusion
In this paper, we presented a data-driven approach to activity segmentation that exploits the
temporal relations in video sequences. The small changes from frame to frame are examined
with slow feature analysis, in order to automatically represent the data in a meaningful hier-
archy. We have shown how this model is applied to unseen videos and that the hierarchy can
be used to explain the observations. Due to two linear techniques of low computational com-
plexity, we are able to efficiently detect normal and abnormal activities. Finally, qualitative
and quantitative results demonstrate the validity of our technique.
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