
Exploiting Simple Hierarchies for Unsupervised Human Behavior Analysis

Fabian Nater1 Helmut Grabner1 Luc Van Gool1,2

1Computer Vision Laboratory 2ESAT - PSI / IBBT
ETH Zurich K.U. Leuven

{fnater,grabner,vangool}@vision.ee.ethz.ch luc.vangool@esat.kuleuven.be

Abstract

We propose a data-driven, hierarchical approach for the
analysis of human actions in visual scenes. In particular, we
focus on the task of in-house assisted living. In such scenar-
ios the environment and the setting may vary considerably
which limits the performance of methods with pre-trained
models. Therefore our model of normality is established
in a completely unsupervised manner and is updated au-
tomatically for scene-specific adaptation. The hierarchical
representation on both an appearance and an action level
paves the way for semantic interpretation. Furthermore we
show that the model is suitable for coupled tracking and ab-
normality detection on different hierarchical stages. As the
experiments show, our approach, simple yet effective, yields
stable results, e.g. the detection of a fall, without any human
interaction.

1. Introduction
In many visual surveillance scenarios, an automatic sys-

tem has to detect anomalies and then give out a warning
for an operator. To cope with various situations and en-
vironments, a multitude of different approaches have been
proposed, see [8] for a survey. Most of these methods de-
tect anomalies as outliers to previously trained models of
normality. Successes include the analysis of an agent’s mo-
tion patterns [19], traffic monitoring [10], the surveillance
of public places [1], and the evaluation of a webcam image
stream [6].

Our work aims at supporting autonomous living of el-
derly or handicapped people, by monitoring their well-
being with a visual surveillance system installed in their
homes. Fall detection is one major task of such activity
monitoring systems [18]. To this end, rule-based systems
have been established, performing well for the detection of
different, predefined dangerous cases (e.g. [2, 15]). They
lack general applicability, however. Other methods imple-
ment a more principled model of human behavior and are

(a) Normal action (b) Abnormal event

(c) Human behavior analysis

Figure 1. Human behavior in an input image stream is analyzed
in a cascade of two hierarchical models. They are established in
an unsupervised manner and permit the characterization of normal
and abnormal events for example in in-house monitoring scenes.

then able to point out suspicious configurations. Boiman
and Irani [4], for example, check whether they can explain
a given activity as a puzzle of spatio-temporal database en-
tries. In our previous work [17], we used a set of trackers,
each dedicated to a certain range of activities. Another ap-
proach is to extract key-frames and estimate transition prob-
abilities for a set of predefined activities (e.g. [14]). The
main limitation of all these systems is their need for an of-
fline, prior training with labeled training data. In such su-
pervised approaches, no long-term adaptation to particular
scenes or persons can be achieved. Furthermore, no training
sequence contains a comprehensive set of all the situations
to expect. Due to these reasons, a dynamical, data-driven



model is called for. In a more unsupervised setting, recent
work [7] uses very weakly annotated image sequences in
order to learn actions autonomously.

In this paper we propose to learn a model of normal hu-
man behavior in a completely unsupervised manner. This
model consists of two hierarchical representations arranged
in a cascade, as illustrated in Fig. 1(c). The first stage en-
codes human appearances and is built by a top-down pro-
cess, whereas the second hierarchy explains sequences of
appearances (i.e. actions or behavioral patterns) and is built
by a bottom-up analysis. In fact, given a sequence of im-
ages, we first map these images to a finite set of symbols
describing what is observed. Secondly, we analyze the se-
quence of symbols to characterize in which order the obser-
vations occur. We call these sequences micro-actions since
they usually correspond to basic body motions. Finally,
the evaluation could be augmented by learning the tempo-
ral (e.g. within a day or a week) and spatial dependencies.
All this together models the normal behavior of a person in
a scene. At runtime, this structure is used as a model of
normality to which unseen data is compared. The person
is tracked and statistical outliers with respect to appearance
and action are detected robustly at different hierarchical lev-
els. We additionally show how to update this model in order
to incorporate newly observed normal instances.

The paper is organized as follows: In Sec. 2 and Sec. 3
we introduce the hierarchical representations for appear-
ances and actions, respectively. Sec. 4 shows the tar-
get tracking and abnormal event detection on unseen data,
Sec. 5 discusses the model update procedure. Experiments
are presented in Sec. 6 and the paper is concluded in Sec. 7.

2. Appearance hierarchy (H1)
We start from an image stream

S = 〈x1, . . . , xT 〉, xt ∈ X (1)

of T frames which is described in an arbitrary feature space
X . The goal is to group similar image descriptors together
and create a finite number of clusters representing the data
in a compact form. Hence, we propose to use a k-means
clustering algorithm [11], applied hierarchically to the train-
ing data in a top-down procedure with a distance measure
d(xi, xj) defined in X . The root node cluster C(1) describes
all xt ∈ S . Moving down in the hierarchy, the data asso-
ciated to one cluster on layer l, i.e. C(l) ⊆ X is separated
into k sub-clusters on layer l + 1. This process is repeated
until a certain stopping criterion is met, for example when
the number of data points in a cluster gets too small. An
example of the resulting tree structure H1 is presented in
Fig. 2 using k = 2.

By creating a hierarchical representation, the clusters be-
come more specific when moving down the tree structure.

Figure 2. Illustration of the unsupervised learning approach, com-
posed of two hierarchies. In H1, a sequence of images is mapped
by clustering to a number of discrete symbols, in H2 the sequence
of these symbols is analyzed.

While the cluster at the root node has to describe all xt in
the training set and thus exhibits a large intra-cluster vari-
ance, clusters at lower layers only contain similar data and
therefore describe this data more precisely.

Eventually, each feature vector xt is mapped to a sym-
bol rt which is the number of its corresponding leaf node
cluster. The image stream is accordingly expressed by the
sequence of symbols, i.e.

S 7→ R = 〈r1, . . . , rT 〉, rt ∈ IN ∪ {]}. (2)

In order to obtain compact clusters, we remove statisti-
cal outliers at every clustering step with the formulation of
Sec. 4.1. The symbol r = ] is assigned to an xt that is not
matched to a leaf node cluster. For their use at runtime, all
obtained clusters C(l)i are represented with their centers ci
and the distribution D(l)

i of distances di = d(ci, x) of all
the samples x assigned to this cluster.

Illustration

We demonstrate the mapping of input images to clus-
ters in the tree structure. An indoor training sequence1 of
about 7, 100 images was recorded at 15 frames per second
in V GA resolution. It contains diverse ’every-day’ actions
such as walking, walking behind occluding objects, sitting
on different chairs, picking up small objects, etc., repeated
a few times.

1Data available from www.vision.ee.ethz.ch/fnater/.



Feature extraction. We apply background subtraction2

on the input images for the extraction of foreground blobs.
The resulting silhouettes are rescaled to a fixed number of
pixels (40 × 40 in our case) and a signed distance trans-
form is applied. Maximum and minimum pixel values
are bounded and an offset is added to obtain non-negative
values (c.f . Fig. 3). Finally, the rows are concatenated
in a vector that defines the fixed length image features x
(N = 1600), describing the appearance of one person in
the scene.

(a) (b) (c) (d)

Figure 3. Feature extraction: (a) original, (b) segmented, (c) post-
processed and rescaled, (d) distance transformed.

Distance measure. As a distance measure to compare the
feature vectors in the clustering procedure, we use the χ2

test statistic as in [3]. Two samples xu and xv with elements
xu(n) and xv(n), n = 1 . . . N are at a distance

d(xu, xv) =
1
2

N∑
n=1

[xu(n)− xv(n)]2

xu(n) + xv(n)
. (3)

This said, the silhouette features are extracted and clus-
tered (k = 2) in order to build H1. The outcome is visual-
ized in Fig. 4, where a random set of silhouettes is shown
for each cluster at different layers. Similar appearances are
grouped well into the same cluster for a hierarchcal depth
of l = 5 already.

3. Action hierarchy (H2)
As depicted in Fig. 2, we start from the sequence of sym-

bols R defined in Eq. (2). The goal is to exploit the infor-
mation in this sequence and extract frequent patterns which
we refer to as micro-actions. Their variable length naturally
defines a hierarchy, since longer actions automatically rep-
resent more information. Our approach is inspired by the
work of Fidler et al. [9], where neighboring generic visual
parts are combined in a hierarchy, in order to form entire
objects on higher levels. At each level only the statistically
relevant parts are chosen in order to omit noise. Since our
input is a one-dimensional state sequence, we combine tem-
porally adjacent generic parts (micro-actions) for the hier-
archical combination of new, more informative ones.

2We operate on static camera images and in scenes with few moving
objects, but other appearance features could be used similarly. However,
we did not notice any failures of our approach that were caused by bad
foreground segmentation.

Figure 4. Visualization of the proposed binary tree for the hierar-
chical appearance representation (H1). For each of the displayed
clusters at different layers C

(l)
i , randomly chosen silhouettes are

displayed.

More in detail, we first define a set of basic actions a(1)
i

that encode a state change rt → rt+1 in the sequence of
symbols:

A(1) = {a(1)
i := rt → rt+1 | rt 6= rt+1, P (a(1)

i ) > θact},
(4)

where P (ai) is the occurrence probability of the micro-
action ai. The parameter θact is defined such that only fre-
quently occurring symbol changes are considered, thereby
discarding spurious changes. From the second level on,
higher level micro-actions with length λ are the combina-
tion of lower level micro-actions, i.e.

A(λ) = {a(λ)
i := a(λ−1)

p → a(λ−1)
q | P (a(λ)

i ) > θact}.
(5)

The frequency condition θact naturally introduces a limit
on the maximal length of the micro-actions (longer micro-
actions appear less frequently). The symbol r = ], at-
tributed to a feature vector which is not matched to any leaf
node cluster, is excluded from the description of any aλi .

We want to be independent of a labeling of the states
(they might even not be attributed a clear label as they are
learned through an unsupervised procedure) and the method
we propose relies much more on the assumption that, within
the target scenario, normal actions are likely to be repeated.
This fact is exploited for the extraction of usual temporal
patterns. Summarizing, we continuously replace the orig-
inal sequence of symbols 〈r1, . . . , rt〉 by frequent patterns
aλi and we can represent the image stream as a series of
micro-actions of different lengths λ:

S 7→ R 7→ 〈a(λ)
1 , . . . , a

(λ)
t 〉, a

(λ)
i ∈ A(λ). (6)

Note that in this formulation, micro-actions can overlap,
which is in line with the observation that often no clear-cut



Figure 5. Illustration of the micro-action hierarchy (H2) for the action recognition test dataset [13]: Micro-actions are extracted from
symbol transitions and can be combined gradually into higher level actions.

(a) ’walk’ (b) ’sit’ (c) ’pick up’

Figure 6. Examples of segmented actions as produced with our method. In an unsupervised manner repetitive microactions are extracted,
which can be labeled manually, if desired. Repetitions in the training dataset are presented in rows.

boundaries of actions can be defined [16].

Illustration

Action recognition We employ a publicly available ac-
tion recognition dataset [13] to illustrate the extraction of
micro-actions and select two right arm motions (’turn left’
and ’stop left’). The two sequences additionally have in-
troductory walking, they are sticked together and analyzed
as shown in Fig. 5. Binary silhouettes are provided in the
dataset. The plotted sequence of symbols is obtained with
the procedure of Sec. 2. In a next step, repeated patterns
in this sequence are extracted first on the basic level a(1)

(i.e. transitions, Eq. (5)), then growing in length on higher
levels (Eq. (6)). The finally meaningful micro-actions are
presented in the upper part of Fig. 5 and correspond to the
actions to be recognized.

Indoor surveillance If we apply the same procedure to
the previously described indoor training video, the sequence
of symbols is more complex and various repeated micro-
actions appear at different hierarchical levels. A selection
is shown in Fig. 6. In case the system would be required
to constantly report activities, they could be labeled manu-

ally for ease of human reference (‘walking’, ‘sitting down’,
’getting up’, ‘picking up from the floor’). This split into
units that intuitively correspond to basic actions, demon-
strates that within the repeated action context, it is possi-
ble to isolate and segment these actions in an unsupervised
manner.

4. Tracking and abnormality detection

In this section, we show how the established model of
normality is employed for the runtime analysis of unseen
images. H1 will be used for tracking and the interpreta-
tion of the appearance, H2 is used for the interpretation of
actions. In both hierarchies, abnormalities can be spotted.

4.1. Data-dependent inlier

Given a query image with extracted features x, we want
to determine its cluster membership Ci based on the distance
d(x, ci). According to the curse of dimensionality, distances
in high dimensional spaces tend to lose their significance
and it is therefore difficult to find a fixed distance threshold
for the classification of the query. Hence, we apply the con-
cept of data-dependent inlier [12], comparing d(x, ci) to the



distance distribution Di of the cluster Ci. The probability
that the query point x is an inlier to Ci is

pinlier (d(x, ci)) = 1−
∫ d(x,ci)

ξ=0

Di(ξ)dξ. (7)

For classifying a sample as inlier, its inlier probability must
exceed a certain threshold:

pinlier (d(x, ci)) ≥ θinlier. (8)

In the analysis of unseen data, we keep θinlier = 0.05
which means that x is classified as outlier if its distance to
the considered cluster center is larger than 95% of the data
in that cluster.

4.2. Tracking

In every frame we want to determine the location and
scale of the bounding box (i.e. find xt) that best matches
the trained model. This is important for a stable symbol
mapping as well as a precise tracking of the human target.
We apply a best search strategy in which the local neigh-
borhood of the output at the previous time step is exhaus-
tively scanned. Each feature representation x′t extracted
from a hypothesized location and scale is evaluated by us-
ing Eq. (8) and is propagated as far as possible in H1. With
this formulation, an x′t can sometimes be matched to more
than one cluster on the same layer. In that case, all con-
nected lower layer clusters are evaluated subsequently. As
tracking result xt, the hypothesis which applies to a cluster
at the lowest possible layer with maximal pinlier is searched
for. Ideally this is a leaf node cluster and its symbol rt is
attributed to xt. If no leaf node cluster is reached, no sym-
bol can be attached to this observation. Furthermore, if the
observation is already outlier to the root node cluster, the
target cannot be tracked in H1. In order not to lose the tar-
get, we simultaneously run a mode estimating tracker [5],
which specifies the output in this case. In our current im-
plementation, this tracker is also used to establish a prior
for the exhaustive search, which additionally speeds up the
procedure.

4.3. Abnormal appearance

An abnormal (or novel) appearance is identified in H1
on hierarchical level l if the tracking result xt is inlier to at
least one cluster at level l but is outlier to all of its connected
clusters in layer l+1. Since no leaf node can be matched to
xt in this case, the symbol rt = ] is attributed, characteriz-
ing an unknown (not matching) state. Of course, if xt is out-
lier at the root node already, it is also abnormal. Although
the tree-like model is learned in an unsupervised manner,
it helps to order and interpret anomalies. Completely new
poses tend to be outliers to clusters close to the tree root al-
ready, while not that different poses are matched on some

layers before being detected as outliers. Hence, and as we
will show in the experimental section, this hierarchy assists
with a semantic interpretation of the abnormal poses.

4.4. Abnormal actions

Abnormal action analysis is based on the mapping S 7→
R and the hierarchical model of usual actions encoded in
the hierarchy H2. In that sense, the sequence R is scanned
for its correspondence to A(λ).

The sequence of symbols rt extracted at runtime is an-
alyzed as in Eq. (4) and Eq. (5) and combined into micro-
actions a(λ)

i with different lengths λ. Each micro-action is
then compared to the set of normal micro-actionsA(λ). If it
is found in the database, it is considered to be normal behav-
ior at level λ. The length of the action is used to know how
usual the behavior is. If xt is mapped to the unknown state
rt = ], no micro-action can be established and the sequence
analysis breaks down temporarily.

4.5. Scene context

Additionally, our approach can be embedded in a scene
context learning framework. There are a certain number
of events or actions which can be usual in one part of the
scene but are not in another one. Thinking of in-house vi-
sual surveillance, this might be the presence of a person ly-
ing on a couch vs. the person lying on the floor. Considering
only human appearances, the two scenarios might look the
same, but with additional scene information, they could be
told apart. Then, the second case could be pointed out as
abnormal.The same idea applies to actions performed at a
certain time of day, e.g. a person observed walking through
a living room at 4 a.m. should not necessarily be considered
normal. However, these techniques lie beyond the scope of
this paper.

5. Update procedure

After the training phase, the model of normal behavior
usually remains fixed. Obviously, not all possible appear-
ances and actions can be learnt off-line, due to the lack of
sufficient training data. Furthermore, the normality con-
cept might change over time and thus the model needs to
be adapted continuously. For example, a different walking
style like limping is (correctly) classified as abnormal since
it can not be modeled through a normal action sequence.
Yet, if it starts to appear frequently, it might turn into a
normal behavior, e.g. due to a lasting deterioration of the
person’s physical state. It is therefore desirable to design a
dynamic method, able to extend (or even shrink) the model
of normality.



5.1. Appearance update

The hierarchical model H1, can essentially be modified
in two ways. Firstly, new appearances which are classified
as outliers at runtime might need to be included if they oc-
cur often. Secondly, some existing cluster could be further
refined, e.g. for the distinction between two persons. Since
we focus on the scenario where a single person should be
monitored when left to his own devices, we will only deal
with the first case as yet. It is clear that for long-term, real-
world usage, the system should be enriched with a method
to identify the person of interest and to notice the presence
of others (like care-takers).

At runtime we collect all feature vectors that are outliers
at a certain layer in the hierarchy. During a supporting phase
(e.g. when the system is in an idle mode since no person
is in the room) we incrementally update the hierarchy. The
creation of new clusters is investigated at the specified layer,
besides the existing ones. To that end, we apply the same
hierarchical clustering approach to the set of outliers. It is
important not to change the existing hierarchy since already
established knowledge should not get lost. Assuming that
also ’real outliers’ could be in the update data, we follow
a restrictive policy and set the threshold θinlier (Eq. (8)) to
a high value already for clustering. Finally, new leaf node
clusters are established and new symbols are defined.

5.2. Micro-action update

Established micro-actions by definition have a sufficient
frequency of occurrence (Eq. (5)). We propose to estimate
these probabilities incrementally, by updating them with
new observations using the principle of exponential forget-
ting. Hence, frequent, new micro-actions become available
for the next level and less frequent micro-actions are re-
moved. Micro-actions using new symbols in H1 are in-
cluded automatically, since they will first get picked up by
lower levels (Eq. (4)) and then might be used for longer
micro-actions as soon as they occur often.

Summarizing, one could start with an empty database,
with everything considered abnormal at the beginning.
When humans (moving objects in general) are observed
several times, first appearances and later micro-actions are
added to the model of normality.

6. Experiments
In this section, we validate the proposed approach with a

series of experiments. To the best of our knowledge, there is
no standard dataset for testing in-the-home visual monitor-
ing techniques. As the experiments will show, the method
is successful at detecting salient appearances and behaviors
also from a human point of view. We want to re-emphasize
at this point, that the main goal of this work is to assist in
the prolonged, independent living of elderly or handicapped

people. Hence, we focus on scenarios with only that single
person in the scene. As such system would need to be de-
ployed in many homes, the unsupervised approach behind
it is of particular importance.

6.1. Behavior analysis

The test footage of about 1, 000 images was recorded in
the same setting as the training sequence (c.f . Sec 2), but
now contains abnormalities such as heavy waving, jump-
ing over the sofa and a fall. The model of normality was
established as explained previously (appearance clustering
in Fig. 4, extraction of frequent micro-actions like the ones
in Fig. 6), and we now want to explain the test sequence
by means of this model. The target person is tracked and
appearances and actions are interpreted. A selection of the
per-frame results are visualized in the top part of Fig. 7.

The color of the bounding box indicates the layer l inH1
farthest from the root, on which the observation is still con-
sidered normal according to Eq. (8). A red bounding box is
drawn if the observation is outlier to the root node, (its di-
mensions are in that case determined by the mode estimat-
ing tracker [5]), nuances of orange are used for intermediate
layers and green encodes an appearace that is described in
a leaf node.

The vertical black bar on the left side of the bounding
box represents the level λ in H2 on which the sequence
of symbols is normal. The bar is resized accordingly. In
case the appearance does not reach a leaf node in H1, i.e.
the bounding box is not green, the action level cannot be
calculated and therefore vanishes.

The plots on the bottom part of Fig. 7 indicate three tem-
poral characteristics: (i) The maximal inlier probability (in
the matching cluster) remains at high value and is stable as
long as one leaf node cluster is matched. We also show the
5% threshold θinlier which is used for the classification of
abnormalities. (ii) The matching cluster identity (symbol
rt) changes over time (0 = ]) which allows for the recog-
nition of (iii) micro-actions. They are matched hierarchi-
cally and the maximal length is visualized. Two patterns
(’walking’ and ’sitting’) are highlighted which in fact cor-
respond to the same micro-actions as shown in Fig. 6(a) and
Fig. 6(b).

We now run through a number of interesting episodes in
the test video. In (a) everything is normal, the action level
is not so high yet since the sequence just started. (b) and
(i) are two abnormal events at different levels within H1,
whereas (e), (g) and (h) are outliers to the root node already.
In these cases, a practical system would probably generate
an alarm. Note that lying on the couch (g) was not present
in the training set, therefore it is judged abnormal at first.
On the other hand, occlusions were trained for and their
handling in (d) does not cause problems. It is interesting
to compare (c) and (f): Although the same appearances are



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Our method tracks the person, analyzes the appearance in H1 and interprets the micro-action in H2. Top: Various normal and
abnormal instances of the test sequence are presented. The color of the bounding box encodes the layer in H1, on which the observation
is normal, the length of the black bar on the left side of the bounding box indicates the micro-action level. Bottom: Three representative
values are plotted over time, the inlier probability at the leaf node level of H1, the matched symbol rt and the micro-action length a(λ).
Two actions are highlighted (see text for details, figure is best viewed in color).

present, (f) needs special attention, since it resulted from an
unknown action (jumping over the couch in (e)) and hence
holds a small black action bar.

6.2. Model update

A second experiment illustrates the benefit of the model
update. The video used for the update contains the repeated
‘abnormality’ of the person lying on the couch but also a
real irregular event (i.e. the person falls). This set of ap-
pearance feature vectors, outliers to the root node of H1, is
stored during the analysis of the sequence and a randomly
chosen sample is presented in Fig. 8(a). All abnormal ap-
pearances are used for updating the model though.

After this update, when analyzing yet another video
sequence, previously normal appearances stay normal
(Fig. 8(b)), lying is now included in the model of normal-
ity and handled accordingly (c), while other events remain
outliers (d). The model would need to see some more oc-
currences of lying on the couch in order to also recognize
the micro-action ’lying down’ as normal. This had not hap-
pened yet, whence the small black action bar in (Fig. 8(c)).

For a more precise analysis of the experiments, we man-

Figure 9. Recall-precision curves for the video sequence of Fig. 7
verifies the applicability of our technique.

ually annotated abnormal events per frame for the sequence
of Fig. 7. A RPC plot, depicted in Fig. 9 quantifies the per-
formance by sweeping parameter θinlier (Eq. (8)). By mov-
ing down in H1 (from layer 1 to layer 5), a higher precision
is achieved, which is essential for our task. At a precision
of 98%, the recall increases from 32% (root node level) to



(a) (b) (c) (d)
Figure 8. Illustration of the update procedure: (a) some feature vectors and their according image regions taken for the update of H1, (b)
normal appearances stay normal after the update, (c) lying turned normal after the update and (d) real outliers are still detected.

77% (leaf node level), respectively to 81% after the update.
These numbers show both, (i) the effect of using the hierar-
chical structure H1 and (ii) the benefit of updating.

7. Conclusion

We have presented an approach for the unsupervised
analysis of human action scenes. In particular, we have fo-
cused on an application to support prolonged independent
living. The ideas are very general however, and can be ex-
tended to other scenarios. The method involves two auto-
matically generated and updated hierarchies learned in an
unsupervised manner. One deals with the normal appear-
ances, and from appearance transitions, the second builds
up a database of normal actions or episodes. Due to the
hierarchical nature of this model of normality, it is easier
to name deviations from normality and to analyze those at
different semantic levels (a human would still have to give
such names to different cases, but that is a small effort). The
system is able to adapt itself and can include new modes of
normality. Hence, also the semantic level increases and af-
ter sufficiently long learning periods, it would become pos-
sible to detect deviations from certain routines. Thus, one
strategy allows for the detection of abnormal events at dif-
ferent levels of sophistication (e.g. falling or walking with
an abnormal gait).
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