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Abstract. Models for visual motion perception exist since some time in
neurophysiology as well as computer vision. In this paper, we present a
comparison between a behavioral study performed with macaque mon-
keys and the output of a computational model. The tasks include the
discrimination between left and right walking directions and forward vs.
backward walking. The goal is to measure generalization performance
over different walking and running speeds. We show in which cases the
results match, and discuss and interpret differences.

1 Introduction

Correctly recognizing biological motion is of utmost importance for the survival
of all animals. The computer vision field has a long tradition in modeling human
motion, especially of walking and running. Of those models, some recent ones
have been inspired by neurophysiology. Human locomotion consists of motion
patterns that involve different movements of all limbs and are therefore widely
used to study visual motion perception on a psychophysical level but also for
modeling with computational algorithms. Studies on action recognition in both
fields suggest that human actions can be described using appearance/form or
motion cues (e.g., [1], [2]).

In this work, we set out to specifically investigate the perception of loco-
motion direction. While discrimination between right- and leftward walking is
possible based on shape cues only (e.g. comparing momentary body poses), dis-
criminating between forward and backward walking at least requires motion
for a successful distinction [3]. A recent behavioral study in macaque monkeys
investigated the perception of walking direction and how well these animals gen-
eralized from a trained categorization of walking to other walking speeds and
running [4]. The question now arises how state-of-the-art methods in computer
vision relate to these findings. More specifically, we focus on a recently proposed
approach which encodes typical appearance and motion patterns in a hierarchical
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framework [5]. The two hierarchies of this model are intended to mirror the sub-
division into “snapshot” and “motion” sensitive neurons that have been found
in the brain of the macaque monkey, more specifically in the superior temporal
sulcus within the temporal lobe [6]. While “snapshot” neurons encode for static
body poses, “motion” neurons are driven by movement (i.e. kinematics). In the
present paper we aim to compare the performances of this algorithm and of be-
havioral macaque responses regarding the visual coding of human locomotion at
different walking and running speeds.

2 Behavioral study

2.1 Subjects and apparatus
Three rhesus monkeys (Macaca mulatta) served as subjects in this study. The
heads of the monkeys were kept immobilized during the sessions (approx. 3h/day)
in order to capture the position of one eye via an infrared tracking device (Eye-
Link II, SR Research, sampling rate 1000 Hz). Eye positions were sampled to
assure that the subjects fixated the stimuli. In order to obtain a juice reward
(operant conditioning), successful fixation, within a predefined window measur-
ing 1.3◦ − 1.7◦, and a correct direct saccade towards one of the response targets
were required, see Fig. 1.

(a) Setup (b) LR/RL task (c) FWD/BWD task

Fig. 1. Experimental setup for the behavioral study (a), illustration of the performed
tasks (b,c). The gray fields indicate what was presented to the monkeys on the screen,
with the respective durations indicated below each screenshot (times expressed in ms).
The dotted rectangles around the red fixation point and the red response targets rep-
resent the windows in which eye positions had to remain prior to, during and after
stimulus presentation (former case) or eye movements had to land, indicating the mon-
keys’ decision (the latter case). Highlighted in green are the correct targets the monkeys
had to saccade to in order to obtain a juice reward.

Each trial started with the presentation of a small red square at the center
of the screen (0.12◦ by 0.12◦). The subjects had to fixate this square for 500 ms,
followed by the presentation of the stimulus (duration = 1086 ms; 65 frames at
a 60 Hz frame rate). Before making a direct eye movement saccade to one of the
two response targets, the monkeys had to fixate the small red square for another
100 ms. During the complete trial duration, monkeys had to maintain their eye
position within the predefined window. Failure to do so resulted in a trial abort.
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Response targets were located at 8.4◦ eccentricity, either on the right, left of
upper part of the screen. The stimuli, described below, measured approximately
6◦ by 2.8◦ degrees (height/ width at the maximal lateral extension respectively).

All animal care, experimental and surgical protocols complied with national
and European guidelines and were approved by the K.U. Leuven Ethical Com-
mittee for animal experiments.

2.2 Stimuli
Stimuli were generated by motion-capturing a male human adult of average phys-
ical constitution walking at 2.5, 4.2 or 6 or running at 8, 10 or 12 km/h. Spec-
ifications of the procedure can be found in [4]. We rendered enriched stimulus
versions by connecting the joints by cylinder-like primitives, yielding humanoid
renderings. Importantly, all stimuli were displayed resembling treadmill loco-
motion, i.e., devoid of any extrinsic/translatory motion component, see Fig. 2.

(a) stimuli for the 6 speeds (b) ankle trajectories

Fig. 2. Stimuli presented in the behavioral and the computational experiments. In (a),
snapshots/body poses of the 6 walking speeds are depicted with the training speed
framed. (b) Ankle trajectories for the same speeds: with increasing speed, step size
increases as well as vertical displacements grow.

2.3 Tasks and training
The three monkeys were extensively trained in discriminating between differ-
ent locomotion categories. In a first task, they were instructed to discriminate
between different facing directions (LR/RL task) when observing the stimulus
(video) that shows a person that is either walking towards the right (LR fwd) or
towards the left (RL fwd). The second task was designed to distinguish forward
from backward locomotion (FWD/BWD task). In that case, the stimulus shows
a person walking towards the right, but either forward (LR fwd) or backward
(LR bwd). The LR bwd condition was generated by playing the LR fwd video
in reverse. The start frames of the movie stimuli were randomized across trials to
avoid that the animals responded to a particular pose occurring at a particular
time in the movie. Training was done only at the 4.2 km/h walking speed.

Substantial training was needed for our monkeys to learn FWD/BWD dis-
criminations, while LR/RL discrimination was made more easily (cf. [4]). E.g.,
the number of trials required to reach 75% correct in a session for the LR/RL

task was 1323 trials, while the same monkey required 37, 238 trials to achieve a
similar performance level in the FWD/BWD task (similar trends were observed
in the other two subjects). Nevertheless, all three monkeys reached behavioral
proficiency at the end of the training sessions.
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2.4 Generalization Test
Trained at one speed only, the monkeys were tested for generalization to other
speeds in the two described tasks. This was realized by interleaving trials of the
trained speed with trials from the other speeds in a 90:10 ratio. Moreover, in
order to avoid associative learning on these new stimuli, we always rewarded
the monkeys on these other speed stimuli (still correct responses on the trained
speed were required to obtain a juice reward).

3 Computational model

We recently developed a technique for the analysis of human behavior from unsu-
pervised silhouette data [5]. In contrast to action recognition systems (e.g., [7])
where specific actions are trained, our approach models the training data in
an unsupervised and generative manner in order to redetect familiar patterns
at runtime. Unknown queries are rejected in the same spirit as in [8]. Our ap-
proach was initially developed to monitor the behavior of (elderly) people in
their homes, in this work we however apply it to the same data as used for the
monkey behavioral study. An overview is depicted in Fig. 3 and described in the
following.

Fig. 3. Schematic overview of the developed computational model. From a set of data,
i.e., an image stream, our approach builds two hierarchies that encode the per frame
appearance (snapshot, H1 ) and the actions (sequence, H2 ) in an unsupervised manner.
H1 is established from clustering the data in a hierarchical manner, H2 analyzes how
the cluster membership (the blue curve) evolves over time.

3.1 Appearance hierarchy (H1)
In a first hierarchical analysis stage, the per-frame appearance (snapshot) of the
observed action is modeled. The training data are presented as normal video
sequences of the humanoid stimuli. As input features we take binary segmented
stimuli. These silhouettes are clustered (k -means) recursively in a top-down pro-
cedure, such that clusters are more specific on higher layers. This results in the
structure H1 as sketched in Fig. 3. The number of layers required, depends on
the variability of the data. In this model, the root node cluster has to describe
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all training features, whereas leaf node clusters only contain similar data and
are more precise. Data points that arrive at one leaf node cluster are given the
corresponding symbol.

3.2 Action hierarchy (H2)
In the action hierarchy, the sequence of symbols for subsequent frames in the
training video data is encoded in a bottom-up process. Thus the evolution of
the appearance over time is explored in H2 as outlined in Fig. 3 (blue curve).
If a change in the sequence of symbols appears, these symbols are combined to
basic-level micro-actions, which are the low-level building blocks of H2. Inspired
by [9], the combination of low-level micro-actions constitute higher-level micro-
actions if they co-occur often enough. In this hierarchy a longer micro-action
implies a more common action, as, again, such longer sequence is found to be
common enough in the training data.

3.3 Analysis of unseen data
H1 and H2 together provide a model of normal human behavior to which new
data is compared at runtime. In H1 a new frame’s appearance is propagated as
far as possible, seeking for the most specific cluster that still describes it well.
Similarly, the observed history of appearances is matched in H2 in order to
evaluate how normal the observed action is. In [5] we show that this model can
be used to track the (human) target, and that the model can be updated during
runtime.

3.4 Generalization test
We use the same stimuli for training and tested the same tasks with the com-
putational model as for the monkeys (cf. Sec. 2). After training with 4.2 km/h
walking stimuli, new stimuli are presented to the model with different walking
speeds in order to test the generalization capacity.

Since the model is designed to cope with larger amounts of data, in which
recurring patterns are detected, 6 repetitions of the same stimuli were used for
training. The appearance hierarchy (H1 ) consists of 4 layers resulting in 8 leaf
node clusters. Separate models were trained for LR fwd, RL fwd and LR bwd.
During testing, we use the LR fwd and the RL fwd models for the LR/RL task,
whereas in the FWD/BWD task we apply the LR fwd and the LR bwd models.

In the test phase, each applied model delivers two output values how well
each test frame matches H1 and H2 (assuming H1 has validated the stimu-
lus), respectively. The value for H1 captures the appearance only by measuring
the similarity to one of the leaf node cluster centers. Additionally, H2 requires
the correct motion and searches for a corresponding micro-action with maximal
length. To finally achieve the output score (appearance score from H1, sequence
score from H2 ) we combine the two models, each trained for one of the two
conditions relevant for the task. They are evaluated at each frame and a likeli-
hood ratio is calculated and averaged across the whole stimulus. If for example
a stimulus walking from left to right is described well in LR fwd, but not in
RL fwd, the resulting score is high. On the other hand, if both models perform
equally well, no clear decision can be drawn and the score is close to 1 (chance
level in the case of the computational model).
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(a) Task (b) Monkeys responses

(c) H1 output (d) H2 output

Fig. 4. LR/RL task: Monkeys performances and model scores for 6 tested speeds.

4 Results and discussion

In this section, the generalization performance for the different walking speeds
is presented and compared between monkey behavior and computational model.

4.1 LR/RL task
The results are depicted in Fig. 4, the monkeys responses are shown in panel (b),
the appearance score (H1 ) in panel (c) and the sequence score (H2 ) in (d). Bold
lines indicate the average results, dotted lines display individual performances
for monkeys or different stimuli. Black boxes at 4.2 km/h point out the training
speed. Chance level is marked with the dashed horizontal line.

In the behavioral study (Fig. 4(b)), categorization generalizes relatively well
across the different walking and running speeds (binomial tests; p < 0.05 for 14
out of 15 generalization points). This suggests that the discrimination is based
on spatial or motion cues that are common to the different speeds.

For the computational part, the results for H2 (Fig. 4(d)) indicate a similar
interpretation for slower walking speeds (2.5-6 km/h). In a more detailed anal-
ysis, we observe that for these speeds, the task can be solved already by only
incorporating H1. Apparently, the appearances are distinctive enough. For the
running stimuli on the other hand, silhouettes are different, thus the performance
in H1 drops, which in turn drags down the H2 scores.

4.2 FWD/BWD task
The results for the FWD/BWD task are visualized in Fig. 5 in the same manner
as for the previous task. The behavioral data from the speed-generalization tests
show that the categorization is specific to walking: in each monkey, generalization
is significant (binomial test: p < 0.05) for the walking, but not the running
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(a) Task (b) Monkeys responses

(c) H1 output (d) H2 output

Fig. 5. FWD/BWD task: Monkeys performances and model scores for 6 tested speeds.

patterns. In fact, in each monkey there is an abrupt drop of the performance
when the locomotion changes from walking to running.

Computational findings show that the evaluation of the appearance (body
poses) only is not sufficient for solving this task (Fig. 5(c)). This is not surprising,
since the appearances are the same for both stimuli. However, if their ordering
is considered (Fig. 5(d)), the task is solvable for walking speeds, and the scores
resemble those of the monkeys. At higher speeds, due to wrong appearance
classification in H1, the sequence is not reliable in H2 anymore.

The lack of significant transfer from the trained walking to running suggests
that the animals learned a particular motion trajectory “template”. Indeed,
examination of the ankle trajectories (cf. Fig. 2(b)) reveals a relatively high
similarity between those trajectories for the three walking speeds, which are in
turn rather distinct from those of the three running patterns. This might also
be a reason for the performance drop of the computational model.

4.3 General discussion
At the behavioral level in our monkeys we noticed a clear qualitative difference in
generalization performances across tasks. Whereas the monkeys were quite apt at
discriminating other speeds not seen before in the LR/RL task, a clear step-wise
function was observed in the FWD/BWD task. In the LR/RL, when confronted
with other walking speeds, i.e., 2.5 or 6 km/h, all three monkeys could correctly
categorize these locomotions significantly higher than chance level. However this
was not the case when confronted with locomotions at running speeds, again a
trend present in all three monkeys.

The broader generalization observed in the LR/RL task compared to the
FWD/BWD task shows that such motion cues are less specific. Alternatively, the
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monkeys might have used spatial features that are common to the walking and
running humanoids that face in a particular direction. The fact that one could
solve the LR/RL task quite simply by basing decisions on the presentation of
just one frame could explain the observed (almost) perfect generalization. This
is analogous to the first hierarchical analysis stage (H1 ), which works on the per-
frame appearances of actions. However, at this stage, the model shows a slightly
different pattern, performing quite robustly for the trained locomotion, with clear
drop-offs already for the neighboring speeds. This is clearly due to overfitting of
the model to the trained action. Monkeys have been exposed to other locomotion
patterns before, in contrast to the computational model. When implementing the
second hierarchical stage of the computational model (H2 ), which incorporates
the evolution of the per-frame appearances over time, the model’s performance
resembles the monkey’s performances more closely, especially for the FWD/BWD

task. In summary, we see that monkeys have the capability to generalize well for
simple tasks where snapshot information is sufficient. This might be due to prior
knowledge based on different functional features, which is so far not included in
the computational model at all.

5 Conclusions
In this work, we compared findings from behavioral studies to a particular, bi-
ologically inspired computer vision algorithm. The most important outcome is
that a two stage computational system can, to some extent, reproduce monkey
responses. The algorithm however has not the same generalization capacities
which suggests that monkeys integrate the training in a broader manner than
the computer does.
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