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Abstract

We present an approach for unusual event detection,
based on a tree of trackers. At lower levels, the trackers
are trained on broad classes of targets. At higher levels,
they aim at more specific targets. For instance, at the root,
a general blob tracker could operate which may track any
object. The next level could already use information about
human appearance to better track people. A further level
could go after specific types of actions like walking, run-
ning, or sitting. Yet another level up, several walking track-
ers can be tuned to the gait of a particular person each.
Thus, at each layer, one or more families of more specific
trackers are available. As long as the target behaves ac-
cording to expectations, a member of a higher up such fam-
ily will be better tuned to the data than its parent tracker
at a lower level. Typically, a better informed tracker per-
forms more robustly. But in cases where unusual events oc-
cur and the normal assumptions about the world no longer
hold, they loose their reliability. In such cases, a less in-
formed tracker, not relying on what has now become false
information, has a good chance of performing better. Such
performance inversion signals an unusual event. Inversions
between levels higher up represent deviations that are se-
mantically more subtle than inversions lower down: for in-
stance an unknown intruder entering a house rather than
seeing a non-human target.

1. Introduction

Detecting events in image streams is a classical task in
computer vision. From a surveillance point of view, it is
particularly important to detect unusual events and thus a
wide variety of different approaches have been proposed
during the last couple of years, covering diverse applica-
tions [5]. Abnormal events are often recognized as outliers
to previously trained models of normality (e.g. [11, 15]).
The approaches vary from using basic (temporal) features
in a statistical analysis (e.g. [1, 20]) to high level specific

Figure 1. Overview of the proposed tracker tree with increasingly
informed trackers for increasing levels A - D. Each black circle de-
picts one tracker, with the actually implemented ones in black and
the pale ones for the purpose of illustration. On level A, any kind
of object is tracked, level B encodes (partial) human appearances,
level C goes after specific actions, whereas on level D action and
person specific trackers are located.

object tracking [9], sometimes incorporating information
on the object’s behavior at certain scene regions [14] or
modelling the tracked object’s normal actions and action-
transitions in a Markovian framework [23].

Within the variety of possible applications for abnor-
mality detection, we address the issue of autonomous liv-
ing, where mostly elderly people are monitored in their
homes. In this context, fall detection is an important as-
pect and various solutions have been proposed for the au-
tomatic generation of alarms in suspect cases [17]. The
approaches include wearable, accelerometer based systems
but also concepts relying on vision. Wireless wearable de-
vices are very reliable, however they have the clear disad-



vantage that the concerned person may forget to wear or to
recharge them. On the other hand, vision systems for fall
detection (e.g. [2, 16, 19]), usually focus on precisely mod-
elling the behavior to be detected i.e. the activity of falling,
for example by means of measuring the speed of the fore-
ground blob transformation, or by including the assumed
immobility of the person after the fall. In a different ap-
proach, Cucchiara et al. [4] use a posture classification sys-
tem for a more detailed human-behavior analysis that per-
mits the detection of a fallen person.

Rather than trying to detect unusual events by modeling
them directly, our approach follows the indirect route of de-
tecting them as deviating from models of usual events. The
latter are easier to come by. This said, in order to cover the
wide range of unusual events that may be of interest, this
calls for modeling a wide spectrum of usual events, often at
different levels of granularity. For instance, the calamity of
falling would be detected as deviating from all the normal
categories like walking, standing, or sitting. Our proposal is
to build an entire tree of trackers, as sketched in Fig. 1 and
explained in detail in the following section. The aspiration
is to detect an increasing gamut of unusual events, which
will also gradually get more subtle and semantically rich.

2. Tracker trees
The tracker tree described in this paper is geared toward

the detection of unusual events in the home (e.g. for elderly
care), the principle however is not restricted to this scenario.
The root node tracker is a simple, generic blob tracker, go-
ing after anything that is not background. One level up,
a tracking-by-detection related framework is used for mul-
tiple body part trackers (full body, upper body, legs, head-
shoulders). On this level, people are tracked, independent of
their activity. One further level up, two trackers detect walk-
ing or sitting people, but more such trackers can be easily
envisaged. This level could be considered an action-specific
level. Then there is one higher level, which specializes the
walking tracker towards trackers that have been tuned par-
ticularly towards the gait of specific people. Hence, our
hierarchy consists of multiple levels, within which families
of trackers are trained to cover the normal conditions at that
level. Notice that at one level there could be multiple such
families. If one would e.g. also have a running tracker at
the action level, it would make sense to also have a family
of person specific running trackers one level up, just as is
illustrated by pale trackers in Fig 1. Going to higher levels,
the trackers are endowed with stronger and stronger knowl-
edge about the (normal) world. In our current implementa-
tion, all the different trackers operate autonomously, i.e. a
tracker does not depend on the outcome of any other.

Unusual events are detected when and where a level can
deal well with an event (can explain it with the available
trackers), whereas none of the relevant trackers at the imme-

diately higher level can. This is motivated by the fact that
a tracker that uses more knowledge about the world should
be more robust. If none of the more informed trackers can
deal with the data, but the less informed one can, then this
is a sign that something unusual is going on. Indeed, using
more information is only advantageous as long as this infor-
mation is correct. In the case of an unusual event, none of
the usual, extra pieces of information apply. A performance
reversal occurs in the sense that the weaker tracker better
explains the data than any of the more informed trackers.
An interesting aspect of the hierarchical approach is that
unusual events at multiple, semantic levels can be handled
and interpreted. For instance, if none of the people trackers
can explain the data well, but the blob tracker follows an
object, we may have a pet entering the home of a person not
having one. If none of the normal action specific trackers
does well, but tracking by full body detection still works,
this might be an indication of an unusual event like limp-
ing. If none of the person-specific walking trackers gives a
strong output, but the generic walking tracker does, an in-
truder can be reported.

Before further characterizing our specific implementa-
tion of the tracker tree concept, we introduce in Sec. 3 a
method of probabilistic shape tracking which will be used
extensively in the realization of the system. Implementation
details are presented in Sec. 4, the experiments are shown in
Sec. 5 and the paper is concluded in Sec. 6 with directions
of future work.

3. Appearance based probabilistic tracking
In this section, we describe a shape based tracking ap-

proach which is based on manifold learning and nicely fits
in the concept of more or less informed trackers. By means
of this method, it is possible to create different trackers by
combining different sets of training data and consequently
making the trackers more or less informed. Most trackers
in our tracker tree implementation have been generated this
way.

Manifold learning is a popular technique in human ac-
tivity modelling and recognition. The fact that consistent
human actions have a small number of intrinsic degrees
of freedom can be exploited for designing a low dimen-
sional manifold which describes the principal aspects of the
observed human activity while omitting details. Learning
manifolds and mapping functions to appearance space and
body pose space is for example used successfully for infer-
ring 3D body pose from silhouettes [7, 10] and also includ-
ing dynamical information [22]. When it comes to tracking,
learned low dimensional manifolds can include dynamical
models which are used for prior computation (e.g. [13]).

Inspired by these ideas, we briefly describe our tracking
method, which unlike other approaches does not infer 3D
human poses, but is modelling and interpreting the person’s
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Figure 2. Image representation: (a) original, (b) segmented and
rescaled, (c) distance transformed, (d) embedded and recon-
structed.

appearances in a probabilistic form.

Representation: In order to encode the shape of the
tracked persons, we use normalized and rescaled silhou-
ettes obtained from background subtraction. As shown in
Fig. 2(a-c), these binary images are converted by a signed-
distance transform, and each frame is reshaped in a vector.

3.1. Model generation

In the training phase, we generate a model represent-
ing the human appearances from a fixed number of image
frames, the extracted feature vectors are combined to a fea-
ture matrix.

Dimensionality reduction: The high dimensionality of
the shape representation space is reduced with respect to
the included training data. For successful tracking we im-
pose the requirement that the chronological order of the in-
put frames has to be reproduced in embedding space. This
means, that the Euclidean distances of consecutive frames,
measured in latent space, should be small.

We use Isomap [21] as a nonlinear dimensionality reduc-
tion technique, which has proven to meet our expectations
and also produces interpretable manifolds. We fix the latent
space to be three dimensional, encoding enough variance
for successful reconstruction and still permitting efficient
tracking. An example of such manifold is shown in Fig. 3.
It was obtained from one person’s continuous unconstrained
walking. Points correspond to video frames and their tem-
poral order is indicated by the connections. For some of the
frames, the according silhouette is displayed. Greyscales
mark the dimension which intuitively encodes the persons
walking direction, reaching from right (light grey) to left
(dark grey), with frontal/dorsal orientations in between. The
manifold also represents the person’s gait with open leg
states being spatially separated from closed ones.

Gaussian Process regression: Isomap is a technique
reducing the data based on local distances, therefore no ex-
plicit mapping is formulated in the framework (in contrast
to linear dimensionality reduction techniques such as prin-
cipal component analysis). For the generative association
between latent space and image representation, we learn
a regression function by using Gaussian Process [18]. To

Figure 3. Visualization of the low-dimensional representation:
Manifold of 600 encoded silhouettes taken from a sequence of one
person’s unconstrained walking (See text for details).

this end, we employ the Gaussian Process toolbox [12] and
compute the mapping function M : z 7→ y which esti-
mates the shape representation y and its variance for any
latent point z. For the ease of notation, we simply denote
the ŷ(ẑ) the predicted shape obtained by mapping a pre-
dicted latent point ẑ. In Fig. 2(d), the image space repre-
sentation is shown after Isomap embedding and Gaussian
Process reconstruction of Fig. 2(c).

3.2. Tracking

After learning a low dimensional manifold representing
a set of encoded silhouettes for a specific action class, the
next step is to explain unseen test sequences within this
model. This is done with a Bayesian tracking approach [6]
by using a six dimensional particle filtering technique. For
every hypothesized sample θi = {ui, vi, si, zi} the obser-
vation likelihood is evaluated, where {u, v} is the bounding
box location in the image, s its scale (with fixed aspect ra-
tio), and z the tracked shape in the low-dimensional embed-
ding space.

Likelihood formulation: For every particle θi, the like-
lihood of the shape observation given this sample is esti-
mated, using the following formulation:

p (yobs|θi) ∝ N
{
d (yobs, ŷ(θi)) ; 0, σ2

}
(1)

with d (yobs, ŷ) a distance function between the ob-
served yobs and the predicted ŷ shapes, both represented as
distance transformed silhouettes. The likelihood is in this
case normally distributed with zero mean and σ2 variance.
More precisely, if we denote the shapes yobs and ŷ as vec-
tors of K elements yk and ŷk, k = 1 . . .K, the distance
function becomes



d (yobs, ŷ) =
K∑

k=1

βk|ykŷk| (2)

with

βk =
{

1 if sign(yk) 6= sign(ŷk)
0 if sign(yk) = sign(ŷk) (3)

such that equally signed pixels in the observed and the
predicted shape do not increase the distance.

This likelihood formulation makes it possible to obtain
a posterior probability density function over all samples θi

given the shape observation yobs for each frame in the test
sequence.

Illustration: The proposed silhouette based tracking
approach is illustrated in Fig. 4, where two frames of a pub-
licly available video sequence1 are shown. On the upper
left of each frame, the background subtracted silhouette is
presented, and on the lower left, the image space represen-
tation of the particle filter sample with the highest weight is
shown. The latter corresponds to the shape encoded in the
low dimensional model which best matches the observed
silhouette. Trained in a controlled lab setup, the learned
model can nonetheless be applied on any sequence and ac-
curate tracking is possible even with noisy background sub-
traction. The tracking approach works well as long as the
observed shape can be well described by the model, i.e. the
likelihood term has clearly pronounced peaks, whereas it
results in small posterior probabilities for out-of-model ob-
servations.

Figure 4. Application of the proposed silhouette based tracking
approach on a publicly available video sequence, from which two
frames are shown. The background subtracted image and the best
corresponding shape in the model are depicted on the left.

Tracking priors: In this probabilistic formulation it is
possible to easily incorporate scene-specific knowledge by
adding tracking priors. For example, a ground plane prior is
used for the stabilization of the tracker and for limiting the
search space of the particle filter.

1video downloaded from www.openvisor.org, 2009/05/27

4. System implementation
The outline of the proposed tracker tree was already pre-

sented in Fig. 1, where schematically all the implemented
trackers were depicted in black circles. The tracker in-
stances are placed on four hierarchical levels A - D. Next,
each level will be detailed by explaining the correspond-
ing trackers. In general, we use both, previously proposed
state-of-the-art methods as well as the custom-built tech-
nique of Sec. 3 trained for different levels of generalization.
The only restriction therein is the number of latent dimen-
sions, which requires a limitation of the input data in terms
of intrinsic variance such that the embedded representation
remains meaningful2.

Level A: The least informed and thus most general
tracker in the tracker tree is meant to trace any foreground
object, subject to any kind of deformation. This is a sim-
ple, generic blob tracker which has no information about
the nature of the foreground object. For this purpose, a color
histogram based implementation of the CAMShift tracking
approach [3] is used.

Level B: The trackers on this level make a first step to-
wards the description of human body shapes. For tracking
people independent of their activity, we use a set of body
part trackers, namely for the lower body, the upper body
and the head-shoulders, depicted on the right part of level
B in Fig. 1. For these three trackers, we generate an em-
bedding using the method of Sec. 3. The image data pro-
vided during the training procedure is chosen with respect
to the specified target class of the tracker. For each of these
three trackers, the obtained low dimensional manifolds are
similar to the one shown in Fig. 3 and encode the principal
motion such that tracking remains possible within this man-
fold. Following the method, particle filter based tracking is
accomplished and the output is a probability that quantizes
the match between observation and body part model.

In addition, the leftmost tracker instance of level B in
Fig. 1 is an implementation of the human detector based
on discriminatively trained part models [8]. It is used as
provided by its author on the website and follows a tracking-
by-detection approach.

Level C: On this level, we are interested in tracking dif-
ferent basic human actions. As shown in Fig. 1, we dis-
pose of two different action trackers, describing walking
and sitting humans respectively, both based on the method
described in Sec. 3.

For generalization reasons, the person upright and per-
son sitting trackers are both trained with image sequences
from multiple persons. The resulting low dimensional man-

2Truly, this is a vague definition, we noticed however that the consistent
human actions we considered can be represented in three dimensions with
the method delivering well-interpretable results. More dimensions could
of course be included.

www.openvisor.org


ifold in the walking person case looks similar to the one
in Fig. 3, but contains more data and hence includes more
variance. For the sitting case, only frontal poses of persons
sitting on different chairs are considered, with the manifold
encoding mainly leg and arm positions as well as sitting
height.

Level D: On the most specific level in the current tracker
tree, the aim is to track one particular person performing a
specified action. In that sense, this is a specialization of the
action specific trackers one level down and we rely there-
fore on a modification of the nonpersonal walking tracker
of level C. The goal is here to model the appearance of two
persons separately by providing individual training data and
learning two distinct manifolds. Besides tracking the con-
sidered person, the tracker outputs a probability quantiz-
ing how well the observed silhouette fits in the individual
model. This output score can also be evaluated relative to
the non-personal walking tracker on level C: The discrep-
ancy in terms of posterior probability between person spe-
cific and non-personal trackers provides information on the
belonging of the observation to the individual model.

5. Experiments

5.1. Experimental setup

We illustrate our implementation of the tracker tree on
three different video sequences. We use videos recorded
with static cameras at a frame rate of at least 15 fps. Two
of the videos were recorded in our lab setup, one is a pub-
lic sequence. Concerning the trackers built with the method
of Sec. 3, we apply background subtraction for the extrac-
tion of the silhouette in each frame. Shapes are then repre-
sented in a 30 × 40 pixel image for the entire body track-
ers, the body part trackers involve smaller representations.
Training data was recorded in a controlled lab environment
and manifolds were constructed from approximately 2500
frames. The parameters used for the Bayesian tracking (σ2

and noise parameters in the particle filter) are estimated
from the training data, the number of particles is empiri-
cally fixed to 1500 and initialization is done manually for
the first frame of the tracking sequence.

5.2. Experiment 1: System operation

In a first experiment, we want to show the properties of
the different trackers in the tracker tree applied in a scene
without any abnormality. In Fig. 5, an extract of the pub-
licly available sequence1 is given, showing a person enter-
ing the room, walking a couple of steps and sitting down.
Four images from this video are displayed in Fig. 5(a-d)
with the tracker’s output probabilities plotted on a logarith-
mic scale for the entire sequence in the lower part of the fig-
ure. The instants corresponding to the presented frames are

indicated by vertical black lines in the plot. In the images,
the white ellipse indicates the general object tracker [3], the
other bounding boxes correspond to the trackers as refer-
enced in the plot legend. In the probability graph we intro-
duce an empirically determined threshold which is used to
decide on the reliability of the tracker. In other words, this
threshold could indicate to the system whether the particular
tracker is likely to explain the observation. The threshold is
indicated by a black dotted horizontal line and accordingly,
only trackers with above-threshold probabilities are visual-
ized in the frames. Note that the yellow bounding box in
the images corresponds to the part model detector [8], for
which no probability output is available and thus only a bi-
nary curve is plotted. In sequence 1 however, this detector
always is active.

From the lower part of Fig. 5 it can be seen that as
long as the person is walking (a), the observation is well
explained by the underlying model of the walking tracker
(black bounding box and line) as the output probability is
high. When the person starts to sit down (b) the walking
tracker fails and also the lower body part tracker has a tran-
sitory instability. Thereafter, the person remains seated (c)
and the sitting tracker is able to explain the situation. All the
part trackers are also active. During transitions (d), when
the person is turning on the chair, he apparently moves in a
way which was not included in the training data. The sitting
tracker is very sensitive to the person’s rotation and there-
fore does not generalize to different viewing angles.

5.3. Experiment 2: Occlusion reasoning and fall
detection

In a second sequence presented in Fig. 6, a person is in
the room (a), walking behind the sofa towards the shelf on
the left (b), taking a book and reading it (c), turning towards
the other shelf (d, e), where the book is placed. Coming
from behind the chair on the right (f), he wants to move to
the front, when suddenly he stumbles across the edge of the
carpet (g) and falls (h). The same color code is used as in
the previous video, omitting the unused sitting tracker.

Again, the relative tracker outputs allow for interpreta-
tions of what is going on in the scene. For example, the
system detects an occlusion (b,c,f) if the walking tracker
fails, but some body parts, in this case head-shoulder and
upper body are still visible. In the same category falls the
event in (e), where the person is holding a book such that
the upper body tracker is perturbed. This demonstrates the
use of body part trackers, especially in living room scenar-
ios where multiple occluders are usually present.

A fall is detected when a foreground object is tracked
but cannot be explained by any of the more specific track-
ers, as seen in Fig 6(h). None of the tracking models trained
for normal human behavior can cope with this special situa-
tion. Here we additionally make use of the sequential infor-
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Figure 5. Results for the first test sequence: The behavior of the different trackers in the framework is presented. The images on top
show four frames from the sequence, their corresponding instants are indicated in the plot on the lower part. The confident trackers are
visualized in the frames with different colors (see text for interpretation, figure is best viewed in color, the full videos can be downloaded
from www.vision.ee.ethz.ch/fnater/tracker-trees/).

mation that we had observed a person right before the fall
happened.

5.4. Experiment 3: Intruder detection

For the intruder detection task, we include the two per-
son specific walking trackers (Fig. 1, level D) as well as
the multiple person walking tracker from level C. In Fig. 7,
the principle is demonstrated with three short sequences,
starring two familiar and one unknown person respectively.
In Fig. 7(a,d), we track the first familiar person. In this
case, the probability outputs for the multiple person tracker
(black) and the person 1 tracker (cyan) correlate while the
person 2 tracker (orange) less well explains the situation. It
is the opposite in Fig. 7(b,e) where the second known per-
son is tracked. If a third, unknown person is in the scene
(Fig. 7(c,f)), its appearance is well modelled by the mul-
tiple person tracker while the person specific ones tend to
fail. The person must therefore be an intruder (in the sense
of someone not known to the system yet).

5.5. Discussion

We see from the experiments that it is useful to interpret
the independent tracker outputs in a tree-like structure. Ir-
regularities in the combination of the different trackers can
be detected. A reasoning is possible on these irregularities
since all the trackers have previously determined tracking
capacities and target classes. Once expanded and used to-
gether with additional temporal information, such a tracking
framework is a powerful tool for unusual event detection.

Finally, the major limitation of the presented trackers
built with the method of Sec. 3 should be pointed out. These
trackers are all based on silhouette representations obtained

from background subtraction and are therefore bound to
perform badly under certain circumstances (moving cam-
era, illumination changes, high noise level, etc.). The in-
truder detection as well task is only supported by the per-
son’s shape and works fine as long as this shape is charac-
teristic for the individual. Other more sophisticated tech-
niques (e.g. gait recognition) could be used instead for im-
proving the performace. However, these issues concern the
current implementation and do not affect the validity of the
presented concept.

6. Conclusions and future work

We proposed tracker trees as a way to detect unusual
events in cases where these are not modeled explicitly. The
underlying idea is to build a hierarchy of trackers, where
the position in the global structure depends on how strong
the prior expectations about the world are that are being ex-
ploited. We have argued that the multi-layer hierarchy al-
lows one to make rather specific interpretations about the
kind of unusual event that has occurred. High up in the
tree semantically more complicated events are detected than
lower down.

Clearly, the tracker tree as proposed here is just an early
example of how such structures may be put to use. More
exhaustive and detailed experiments will be performed in
the future and several improvements will be added.

Firstly, so far, the different trackers all run indepen-
dently, and their performance levels are compared. As long
as the assumptions used by a higher-level tracker are cor-
rect, such tracker has a better chance in successfully track-
ing the target. They can better distinguish target from back-

www.vision.ee.ethz.ch/fnater/tracker-trees/


ground and can make better predictions about the future.
Thus, it would be beneficial for the entire system that lower-
level trackers, that operate without such strong expecta-
tions, would be helped by the successful higher-level ones
to keep on track. On the other hand, the lower-level track-
ers are typically simpler and therefore less time consum-
ing (e.g. a blob tracker vs. a full articulated body motion
tracker). They could help the higher levels to focus their
(expensive) attention on the most promising parts. Then
again, with bi-directional information flows between lower
and higher levels, a danger of instability will occur, espe-
cially in cases where the higher levels put wrong informa-
tion into the system. This would be the case if the assump-
tions they make no longer correspond with reality. As a
consequence, the detection of performance reversals as re-
lated to unusual events is also important to keep the inter-
connected tracker system stable.

Secondly, we think of expanding the system to include
scene and temporal information, in that certain events are
only normal at predefined image regions and during certain
times (of the day). This information should of course be
trained from run-time observations.

Thirdly, the current system is still pretty limited in what
it can detect. The addition of complementary trackers and
detectors is called for and one can think of different direc-
tions of extension. For instance, we are working on track-
ers that are dedicated to walking with different emotions
(e.g. joyfully, depressed, with anger, with fear, neutrally).
This family of trackers would then exist next to the person-
specific walking trackers at level D and represent a second,
independent specialization of the generic walking tracker.
The tracker tree could also be further extended on other lev-
els. In particular if the application scenario is changed, the
addition of different action trackers seems necessary. More-
over, the tree is not limited to four levels, if further granu-
larity is required, additional levels could be added easily.

Finally, it is clear that unusual is not the same as impor-
tant. Not all unusual events detected by such system will
be relevant, and vice versa an extensive such system will
contain explicit trackers and detectors for several relevant
cases, e.g. for angry walking.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Results for the second test sequence: The system’s reaction in the case of abnormal events is illustrated, including occlusions,
unmodeled appearances and a fall. The instants corresponding to the displayed frames are indicated in the plot by vertical bars. The
confident trackers are displayed in the images.

(a) Person 1 (b) Person 2 (c) Intruder

(d) (e) (f)
Figure 7. Results for the person identification task. Three different persons are shown walking through the room, the matching probabilities
of the observation to the general (black) and the two person specific models (cyan and orange) are plotted beneath the corresponding frames.
For the sake of visibility, all the other trackers in the system are omitted.


