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Abstract

The required amount of labeled training data for object
detection and classification is a major drawback of current
methods. Combining labeled and unlabeled data via semi-
supervised learning holds the promise to ease the tedious
and time consuming labeling effort. This paper presents a
novel semi-supervised learning method which combines the
power of learned similarity functions and classifiers. The
approach capable of exploiting both labeled and unlabeled
data is formulated in a boosting framework. One classifier
(the learned similarity) serves as a prior which is steadily
improved via training a second classifier on labeled and
unlabeled samples. We demonstrate the approach on chal-
lenging computer vision applications. First, we show how
we can train a classifier using only a few labeled samples
and many unlabeled data. Second, we improve (specialize)
a state-of-the-art detector by using labeled and unlabeled
data.

1. Introduction

In recent years, there was significant progress on meth-
ods for visual object recognition and categorization. For
example, the performance on the Caltech 101 dataset was
in 2004 approximately 16%, now the best performing ap-
proaches obtain close to 70% [11]. Besides novel meth-
ods for local image representations, there was a signifi-
cant progress in using advanced machine learning methods
(e.g., Boosting [9], support vector machines [25]). Fur-
ther, if enough labeled training data exists these approaches
can obtain very high recognition performances (e.g., [26]).
However, for most practical problems (with many classes
and high variability within the classes) there is simply not
enough labeled data available, whereas hand-labeling is te-
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Figure 1. A trained classifier/detector can be substantially im-
proved (increase detection rate, reduce false positive rate and bet-
ter alignment of detections) given additionally unlabeled data.

dious and expensive, in some cases not even feasible.

The lack of sufficient labeled training data is the rea-
son for the recent attention towards unsupervised and semi-
supervised training algorithms. The key-idea of semi-
supervised learning is to exploit labeled samples as well as
a large number of unlabeled samples for obtaining an ac-
curate decision border (see Zhu [28] for a recent overview
of approaches). This differs from the conventional “miss-
ing data” problem in that the size of the unlabeled data
exceeds that of the labeled by far. The central issue
of semi-supervised learning is how to exploit this huge
amount of information. Hence, a number of different al-
gorithms have been proposed, e.g., transductive support
vector machines [4], graph-based semi-supervised learn-
ing [3, 23, 29], semi-supervised linear discriminant anal-
ysis [6], discriminative-generative methods [1], and even
self-taught semi-supervised learning [21]. Very recently
Mallapragada et al. [19] proposed a semi-supervised boost-
ing method which outperforms other approaches on stan-
dard machine learning benchmark problems.

In computer vision, Cohen et al. [7] use both labeled and
unlabeled data to improve on face detectors. In [27] a semi-
supervised approach for detecting objects in aerial images
has been developed. Various methods [13, 15, 24] have been



used in the context of image retrieval. Also related but only
inspired by semi-supervised learning is the work of Li et
al. [18] which presents an incremental approach to learn
object categories using internet search as an additional in-
formation.

A fundamental requirement for many semi-supervised
learning approaches is the need for a similarity measure in
order to measure the distance between samples (labeled and
unlabeled) in feature space. Learning distance/similarity
functions is a closely related strand of research which has
received considerable attention in machine learning. There
is large amount of work on defining image-to-kernel func-
tions, e.g., [12, 16] for image comparison. Yet, it is not
always possible to define such “good” measures, e.g., in
object categorization where one deals with a high intra-
class variance and low interclass variance. Therefore, e.g.,
Nowak et al. [20] investigated learning these measures.
Hertz et al. [14] proposed a large margin boosting formula-
tion for learning distance functions to be used in clustering.
Very recently Frome et al. [11] have proposed a large mar-
gin formulation for learning globally consistent local dis-
tance functions.

The main contribution of this paper is to combine sim-
ilarity learning and semi-supervised boosting and thereby
enabling the application on challenging computer vision
tasks. Our work is based on SemiBoost proposed in [19]
which, however, is limited to fixed similarities. In contrast,
this paper demonstrates that also the similarity measure can
be learned leading to a very flexible versatile method. Be-
sides illustrating results on artificial data we demonstrate
the algorithm on two tasks. First, we show how to train a
state-of-the art classifier from a few labeled examples and
many unlabeled samples. Second, we demonstrate that the
novel semi-supervised boosting method can be used to im-
prove a state-of-the-art detector using unlabeled samples.

The rest of the paper is organized as follows. In Sec.
2 we review Boosting on labeled and unlabeled data. Sec.
3 brings together learning of visual similarities and Semi-
Boost. Experiments on computer vision applications are
shown in Sec. 4 and, finally, Sec. 5 concludes the paper.

2. Boosting on labeled and unlabeled data
2.1. Supervised Boosting

In supervised learning one deals with a labeled dataset
DL = {(thl), ey (Xl'DL‘7y|DL|)} - X x y where X; €
X = RM and y; € Y. In this paper, we focus on the
binary classification problem, therefore Y = {+1, —1} and
the samples are split into two sets XY = X+ U X~ of all
samples with a positive class and the set of all samples with
negative class, respectively. Then, a classifier H : X — )
is trained using the labeled samples.

Boosting! in general converts a weak learning algo-
rithm into a strong one [9]. A strong classifier Hy(x) =
Ziv:l aph,(X) is a linear combination of N weak classi-
fiers h,,(x) which have only to be slightly better than ran-
dom guessing. The weak classifiers are trained using a
weighted training set DX, This is done by adaptive logis-
tic regression (Friedman er al. [10]). Boosting minimizes
an exponential loss function on the training data

Lpw =) Lxy) = e v (1)

xeDL xeDL

It is easy to show [10] that IE(e¥®)), where E(-) is the
expectation operator, is minimized by AdaBoost and hence

H(x)

Py =1%) = g 2)

2.2. Semi-Supervised Boosting

Unsupervised methods aim to find an interesting (nat-
ural) structure in X using only unlabeled data DYV =
{X1,...,xjpv|} € X. Semi-supervised learning uses both
labeled D and unlabeled DYV data. There exist differ-
ent methods how the unlabeled data can be included in the
learning process [28]. In this paper, we focus on inductive
learning, where in addition to assigning labels to the unla-
beled samples, also a classifier is provided.

d’Alche-Buc er al. [8] were the first to extend boost-
ing to semi-supervised learning by using a semi-supervised
learning algorithm as a weak classifier. Hertz et al. [14]
proposed to include unlabeled data as prior for the weak
classifiers. Bennett et al. [5] extend the loss function

Lprupy = Y eV L0 Y~ e IHOL - (3)

xeDL xeDU

in order to take the unlabeled data into account (C' > 0
is a constant introduced to weight the importance between
the labeled and the unlabeled data). In these approaches,
the unlabeled data is used to regularize the decision bound-
ary where the boundary which passes through a region with
low density of unlabeled examples is preferred over heavily
popularized regions in feature space.

2.3. SemiBoost

In contrast to the methods mentioned above, this work
combines ideas from graph theory and clustering. Thus,
we build on SemiBoost [19] which, additionally, guides the
learning process using pairwise similarities. Depending on
how the samples are provided, three different loss functions
are defined which are then additively combined. The goal
is to use boosting in order to minimize the combined loss.

I'This paper solely focuses on the discrete version of AdaBoost.



Labeled Samples
As in “standard” boosting, we use the exponential loss for
samples x; € X' with correct label y; as

LE(x;,y;) = e~ i), 4)

Note, the factor 2 in the exponential function is used to
simplify the notation, but of course, does not change the
minimum.

Pair of Labeled and Unlabeled Samples

Given a sample x; € X L Jabeled with y; and a second unla-
beled sample x; € X'V. We define the loss between labeled
and unlabeled examples as

ELU(mehXj) = S(Xiaxj)e_2H(Xj)yi7 (5)
where S(x;,X;) is a similarity measure of the two exam-
ples. The intuition behind this is, that if x; and x; are very
similar also the labels should be the same.

Pair of Two Unlabeled Samples
Given two unlabeled samples x;,x; € X U we define a loss
which forces an agreement if the samples are similar. This
is done by defining

LYY (x;,x;) := S(x;,x;) cosh(H(x;) — H(x;)). (6)
Since cosh(z) > 1 is a symmetric function which has
its minimum at z = 0 it measures the agreement of the
two classifier responses. For simplicity we assume that
S(x;,x;) is symmetric? and thus we can rewrite Eq. (6) as

LU (x;,x;) = %S(X“Xj) H=HO) 4 GHON=H)].

(N
The Combined Loss
By summing over the labeled and unlabeled examples, re-
spectively, we define a combined objective function.

£m iy 3 e
xexkt

“rwl‘xu‘ Z Z S(Xi,Xj)e
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Note, instead of using the size of the training sets for nor-
malization one can also use other weighting terms empha-
sizing different criteria (e.g., labeld data). Following the
derivation of the AdaBoost algorithm on labeled examples
we can optimize this objective function in a greedy manner

2In general the approach works also with asymmetric similarities (e.g.,
KL-divergence) [19].

by splitting off the n-th weak classifier. Thus, we solve the
optimization problem by looking for the best weak classifier
h,, and weight «,,, which are added to the ensemble:

(an, hy) = arg min (£) 9)

Qs lin

Due to the limited space we solely show three important
steps of the whole derivation. Rewriting the loss defined in
Eq. (8) by taking the results from [10] and [19] into account,
we get

< XlL‘ Z wn (X, y)e

xexkt

i 3 [pae e g (e O] (10)
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where the term w,, (x, y) = e~2¥n-1(%) is the weight of a
labeled sample and the terms

72HV,L71(X)‘ 1 Z S(X,Xi)+ (11)

x; EXT
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gn (%) = €210 L Z S(x,x;)+ (12)
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can be interpreted as confidences of an unlabeled sample
belonging to the positive (p,, (x)) and negative class (g, (x)),
respectively. This can be upper bounded by

(6% — )T epn €O
ha (X)#y

+ XlL|eia" Z wy (X, y)+
xeXxX L

77 Y (Pa(x)
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in order to make it better suitable for a boosting algorithm.
The solution can be obtained in two steps: (i) find the
weak classifier h,,(x) and (ii) the corresponding weight «,.
When minimizing with respect to h,,(x) this is equivalent
to minimizing Eq. (14), because the other terms do not af-
fect the location of the minima. The classifier is trained in
order to minimize the weighted error of the samples. For
a labeled sample x € X' this is equal to standard boosting
using the weight w,, (x). The second term of Eq.(14) consid-
ers the unlabeled samples. In order to minimize it, the unla-
beled sample x € X'V should be assigned the (pseudo)-label



ho(x) = argnﬁin(lxl” N wn(xy) — Z(pn(x)—qn(x))anhn(x)) (14)
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Figure 2. SemiBoost combined with a learned similarity measure
from given labeled samples (a) and an improvement with new data

(b).

zn(X) = sign(pn(x) — ¢, (x)) and should be sampled ac-
cording the confidence weight |p,,(X) — ¢, (x)|. The weight
a,, is obtained by taking the derivative of Eq. (10) with re-
spect to av,, and setting it to zero. The minimum is found as
shown in Eq. (15).

Summarizing, the algorithm minimizes an objective
function which takes labeled and unlabeled data into ac-
count using the similarity between samples. When no unla-
beled data is used (i.e., XV = {}) Eq. (14) and (15) reduce
to the well known AdaBoost formulas.

3. SemiBoost with Learned Visual Similarities

SemiBoost has the power to exploit both labeled and un-
labeled samples, if a similarity measure S(x;,X;) is given.
In this section, we first focus on how this similarity can be
obtained for images. In the second part we consider a spe-
cial case and derive a classifier improving strategy inspired
by the SemiBoost algorithm. An overview of the two ap-
proaches is depicted in Fig. 2.

1 ( |X1U‘ (Z xexV pn(x) + ZXEXU/\hn(X)z—l Qn(x)> + ‘/\}L‘ Z xexl wn(x, y))

‘XlU| (Z xexU Qn(X) + Z x(egr\;U pn(X)) + |X71L\ Z xexL ’LU,L(X, y)
hn(x)=—1

15)
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3.1. Learning the Visual Similarity

In principle, any given similarity measure can be used
for S(x;,x;). However, to be more flexible we propose to
learn the similarity (see the brief overview in the Introduc-
tion) following the approach in [14] for learning distance
functions. A distance function is a function of pairs of data
points to the positive real numbers, usually (but not neces-
sarily) symmetric with respect to its arguments. We define
the learning problem on the product space of the input as

H?: X x X — Y = [~11]. To train a maximum margin
classifier the training set
D = {(xi,xj, +D)ly: = yj, x:,%; € D} U

U{(Xi,Xj, —1)|y1 7é Yj, Xi, X5 S DL} (16)

is built by taking pairs of images of “same” and “different”
class. Using pairs allows us to create a large number of
training samples while having only a few labeled starting
samples. The symmetry of the distance is not satisfied au-
tomatically, therefore it has to be enforced by introducing
each pair twice, i.e., both (x;,X;) and (X;,X;). Then, as in
[14] we use boosting to learn a classifier. The trained and
normalized classifier H¢(x;,x;) € [—1 1] is interpreted as
a distance d(x;,x;) = 1 — 3 (H%(x;,x;) + 1). Furthermore,
this can then be converted to a similarity measure, e.g., by a
radial basis function

< _ d(x; 2j ) >
S(xi,xj) =e 7 ; 17)
where o2 is the scale parameter.

3.2. Similarity as Prior Classifier

Let us consider the case that we have given a prior
classifier H” (x) which can already (partially) solve our
problem. We show that we can approximate the similarity
S(x;,X;) using this prior. First, we show how the training
can be done. Second, for evaluation we can use the prior by
combining it with the (newly) trained classifier. Thereby,
we benefit from the information which is already encoded
in the prior classifier. Roughly speaking, the newly trained
classifier can be rather “small”, only correcting the mis-
takes of H (x).
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Figure 3. The similarity between two samples x; and Xx; is approx-
imated by the difference of the responses from an a-priori given
classifier 7 (-).

Training

We assume that we have access to a prior classifier
HP(x) € [-1 1] (e.g., an already trained face detector).
The classifier has to provide a confidence measure of its
classification. The more confident the decision is the higher
the absolute value of the response (e.g., boosting can be
used to train such a classifier and the responds can be trans-
lated into a probability using Eq. (2)). Thus, we define as
distance measure

d(x;,x;) = [H" (x;) — H (x;)] (18)

as the absolute difference of the classifier response to the
decision boundary. In other words, samples are similar
if they have similar classifier response. The principle
is visualized in Fig. 3. The distance is converted to a
similarity using Eq. (17) as described in the previous
subsection. Now, we are able to proceed training on the
proposed SemiBoost manner.

Classifier Combination
If we train a SemiBoost classifier H (x) using the prior clas-
sifier HY (x) as similarity measure, it makes sense to use
this prior knowledge for the final classification process as
well (i.e., combine the two classifiers). This is closely re-
lated to the approach proposed by Schapire et al. [22]. Sim-
ilarly, we use the prior knowledge as the 0*" weak classifier
ho(x) = o~ 1(PP(y = 1|x)) where PP (y = 1]x) is the
a-priori probability of the sample corresponding to the pos-
itive class and o~ !(-) is the inverse function of our logis-
tic model (see Eq. (2)). Since we use boosting to train the
prior classifier, we end up with ho(x) = H¥ (x) which is in-
cluded in the combined classifier H¢ (x) = HT (x)+ H(x).
Similar to the standard boosting we can take a look at
the expected value of the loss function [10] and compared
to Eq. (2) we get for the combined classifier

GHE () +H ()
Py =1|x) =

eHP(X)+H(x) 4 ¢—HP(x)—H(x) " (19

If we are only interested in the decision we see that a sample
is classified as positive if we set P(y = 1|x) > 0.5 and after

some mathematical rewriting we get

§ = sign (sinh(H" (x) + H(x))) = sign (H"(x) + H(x)).

(20)
The interpretation is as follows. A label switch can happen,
i.e., H(x) can overrule H”(x), if the combined term has a
different label as the prior H”(x). As can be easily seen,
this is the case if |H| > |H?|. Therefore, the more confi-
dent the prior is, the harder it is that the label changes. We
do not make any statements whether this is a correct or in-
correct label switch. Note, the prior classifier can be wrong,
but it has to provide an “honest” decision. Meaning, if it is
highly confident it must be ensured to be a correct decision.
There are also relations to the co-training [2] assumptions,
i.e., a classifier should be never “confident but wrong”. By
rewriting Eq. (20) as § = sign(sinh(HF (x) + H(x)) =
sign(cosh(H (x)) sinh(H (x)) + cosh(HT (x))sinh(H))
one sees that it is a weighted combination. The factor ob-
tained by cosh(-) > 1 weights the decision of the asymmet-
ric sinh(+) function for the respectively other classifier. By
an additional scaling factor more emphasis can be put either
on the prior or the newly trained classifier, however, this is
not explored in this paper.

To sum up, after training H (x) the expected target of an
example is obtained by a combined decision. The combined
classifier can now be interpreted as improving H ¥ (x) using
labeled and unlabeled samples. Note, that we train H (x)
using SemiBoost using labeled and unlabeled data, since
HPF(x) is used to calculate the similarity via (Eq. (18) and
Eq. (17)) these two classifiers are tightly coupled via the
training process and Eq. (20) is not just a simple sum rule.
If we use a complex (many weak classifiers) classifier and
have a lot of training data H(x) will “absorb” the whole
knowledge of H (x), therefore the usual setting is that we
us a rather small H (x) to only correct H” (x).

4. Experiments

We start with an illustration of the proposed algorithm
on a toy example. Then, we show how SemiBoost performs
on images with learned pairwise visual similarities. Finally,
we demonstrate the classifier improving strategy for face
and car detection.

4.1. Toy Experiment

We consider a two class classification problem depicted
in Fig. 4. The underlying data generating process produces
positive samples around the point (0.5,0.5) and negative
samples at a circle centered at the same point with radius 1
(both with variance 0.1). First, we train a “common’ boost-
ing classifier (as weak classifiers a linear separator is used)
on just the labeled examples (red and blue circles). Second,
we use our proposed SemiBoost approach. Additionally,
we use 100 unlabeled points (black crosses) drawn from the
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(b) SemiBoost: Boosting with labeled and unlabeled data
Figure 4. Toy Example 1: Positive and negative labeled (red and
blue circles) and unlabeled samples (back crosses) are used for
learning via “common” boosting (a) and using the proposed Semi-
Boosting approach (b) which additionally takes unlabeled data into
account.

distributions above. As distance measure the Euclidean dis-
tance is used and converted to a similarity measure using
Equation (17) with o2 = 0.01. The left side of the plot
shows the samples and the decision border. The right side of
each subfigure depicts the probability for the positive class
P(y = 1]x). Fig. 4(a) shows a weak decision due to the
limited number of samples, Fig. 4(b) using additional unla-
beled data an essentially improved decision is obtained by
SemiBoost.

The second toy example (Fig. 5) shows improvement of
a prior classifier. We build an “honest” prior by estimating
the positive and negative probability using a kernel density
estimation (Gaussian-distribution with o2 = 0.05) on the
labeled samples. This prior serves as similarity measure
for SemiBoost, which is used to train a small classifier (10
weak classifiers). The combined classifier performs better
than the prior and the newly trained alone, respectively.

4.2. Classification from Few Labeled Examples

We collected a set of 1100 30 x 30 car patches with
the help of a simple motion detector from a common traf-
fic scene (similar to Fig. 9) and, additionally, 1100 random
negative patches from the same scene. 300 positives and
300 negatives were kept as an independent test set. First,
we trained a similarity using only 15 random positive and
negative samples. The distance function is learned on pairs

2 " ; . . :
1 Priar
CHED SomiBoost
* <ERER> Combined

.\' °
\,\
e T Ty L

L 05 ] 05 1 15 2
Figure 5. Toy Example 2: The decision boundary of an “honest”
prior (green) is “corrected” by a SemiBoost classifier (red) and the
combined decision boundary (blue) is archived.
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ples
Figure 6. Learning of a car-detector: Performance of the pro-
posed approach improves significantly compared to the common
approach (no unlabeled data is used) both when (a) including more
weak classifiers and (b) use more unlabeled data.

of images as explained in Sec. 3.
In order to train the classifiers we use simple Haar-like



(b) trained

Figure 7. Detection results of a face detector (a) which serves as
prior to build a SemiBoost classifier using additional unlabeled
data. This classifier alone (b) has not the power of delivering good
results but the combination improves the result essentially.

(c) combined

(a) prior

features as in [26]. Fig. 6(a) compares common boosting
and the proposed SemiBoost approach on the test set (the
boxplot was obtained by repeating the experiment 5 times).
1600 additionally unlabeled samples were used. As can be
seen, the performance increases continuously when adding
further weak classifiers and significantly outperforms the
standard boosting. Fig. 6(b) shows the performance via
ROC-curves of the approach using 200, 800 and 1600 unla-
beled samples, respectively.

4.3. Improving a Detector

For each of the following two experiments, we first train
a Viola/Jones detector [26] on labeled data. The response
of the last cascade layer is used as our prior classifier.
The final detection results are obtained by non-maxima
suppression as post processing step. Note, our approach
is substantially different from other detector improving
methods, e.g. [17] which is based on co-learning that
requires different visual cues.

Face Detector

Fig. 7(a) depicts the results by applying the prior classi-
fier trained on the frequently used MIT+CMU faces where
state-of-the-art results are achieved. Then, the classifier was
applied on 300 random images downloaded from Google-
Image search with the keyword “team”. The delivered de-
tections (>4000) are used as additional unlabeled data. The
50 most confident detections were used as positive labeled
data and the 50 least confident detections were used as neg-
ative ones for training the SemiBoost classifier with only
30 weak classifiers. The proposed combination strategy
(Eq. (20)) improved the results (higher detection and lower
false positive rate as well as a better alignment of the de-
tections) as shown in Fig. 7(c). Note, the trained classifier
alone consists only of 30 weak classifiers which yields poor
results when applied on the image (Fig. 7(b)). Of course,
when using more weak classifiers it will learn the prior in-
formation as well. Additionally, Fig. 8 shows representative
examples which were obtained by our approach.

Scene Adaption
A car detector was trained for a specific scene using 1000

Figure 8. Detection results of a state-of-the-art face detector (left)
and the improved results obtained by the proposed strategy (right).

labeled samples (a representative result is illustrated in
Fig. 9(a)). When applying this classifier on a different scene
with a similar view point, as expected, it performs signifi-
cantly worse (Fig. 9(b)). Hence, in order to adapt the detec-
tor to the different scene, we apply a simple motion detector
to get potential positive samples. After collecting 1000 of
them and additionally cropping 1000 random sub-patches
from the scene these 2000 serve as unlabeled examples to
train a SemiBoost classifier with 30 weak classifiers. A typ-
ical frame superimposed with the detection result is shown
in Fig. 9(c). The detection results improved (much lower
false positive rate and higher detection rate) as shown in
Fig. 9(d).

5. Conclusion

In this paper, we have presented a combination of learn-
ing visual similarity functions and semi-supervised boost-
ing classifiers. Semi-supervised learning reduces the re-
quired amount of labeled training data considerably. This
combination has allowed to tackle with challenging vision
problems which require specific similarity functions. Fur-
thermore, we have proposed a method to use an a-priori
given classifier and improve it by SemiBoost. Experiments
illustrate the method on learning and improving object de-
tectors. We are confident to extend this approach for web
search applications as well as for on-line learning tasks.
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Figure 9. A scene specific car detector for scene 1 (a) is applied on a “similar” scene (b). The poor behavior can be significantly improved
using unlabeled data taken from the second scene as shown by a typical frame (c) and by a ROC-comparison (d).
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