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Abstract. Modelling the dynamic behaviour of moving objects is one of the
basic tasks in computer vision. In this paper, we introduce the Object Flow,
for estimating both the displacement and the direction of an object-of-interest.
Compared to the detection and tracking techniques, our approach obtains the ob-
ject displacement directly similar to optical flow, while ignoring other irrelevant
movements in the scene. Hence, Object Flow has the ability to continuously focus
on a specific object and calculate its motion field. The resulting motion represen-
tation is useful for a variety of visual applications (e.g., scene description, object
tracking, action recognition) and it cannot be directly obtained using the existing
methods.

1 Introduction

Visual applications often rely on the information extracted by the moving objects inside
a scene (e.g. cars, humans, machines etc.) These objects usually interact with other
objects or the environment, thus modelling their dynamic behaviour is one of the basic
tasks in computer vision.

(a) image pairs (b) object det. (c) optical flow (d) Object Flow

Fig. 1. Video captured at Abbey road in London (a). An appearance based object detector (b) can
localize the human, however gives no information about its movement. On the other hand, optical
flow (c) approaches cannot distinguish between object movement and other irrelevant movements
in the scene. Hence, we propose a motion representation (d), which has the ability to focus only
on moving objects-of-interest in the scene.



2 Constantinos Lalos, Helmut Grabner, Luc Van Gool and Theodora Varvarigou

The estimation of the motion field for the whole scene is typically performed using
optical flow methods. Works on optical flow start in the early 80’s [1, 2] and target on
establishing region correspondence between subsequent images4. Over the years a sig-
nificant progress has been made, both in improving computational speed (e.g., [5]) and
in dealing with large region displacements, (e.g., [6]). Recently, learning (e.g., [7]) and
context [8] based approaches are taken into account in order to overcome the limitations
of the classical optical flow formulation. In general, optical flow techniques have many
possible applications, such as motion segmentation [9], object tracking [10], collection
of statistics of the scene [11] or acting as human computer interface [12].

On the other hand, detection and tracking of individual objects (e.g., persons, cars)
is important for several real-life applications including visual surveillance and automo-
tive safety (e.g., [13]). In the last years, a lot of attention is paid to tracking by detection
approaches (e.g., [14, 15]). Hereby, a pre-trained object detector is applied on every
frame and then the obtained detections are associated together across images. Further-
more, on-line learning methods (e.g., [16]) can be also used to dynamically update the
object model and to cope with the variations of the object appearance. The data associ-
ation problem is further simplified, since a discriminative model is trained in advance,
for distinguishing the object appearance from its surrounding background. However,
due to the self-learning strategy in place, such approaches might suffer from drifting
(see [17] for a recent discussion).

Contribution. We introduce a method for obtaining the displacement of an object
– the Object Flow – directly whereas other irrelevant movements inside the scene (e.g.,
other objects or moving background) are ignored (see Fig. 1). Since no on-line learning
is performed during runtime, the results are stable (i.e. do not suffer from drifting).
Hence, the resulting motion representation is useful for a variety of visual applications
and cannot be directly obtained using the existing methods such as optical flow or object
detection/tracking.

The remainder of the paper is organized as follows. Firstly, the idea of training a
classifier on object displacement is described in detail at Section 2. Then the experi-
mental results and the conclusions are elaborated at Sections 3 and 4 respectively.

2 Object Flow

In this section, we first formulate the learning problem for training a model (classifier),
which is then used to deliver the Object Flow.

2.1 Problem Formulation and Learning

The goal of object detection is to find a required object in an image. Most state-of-
the art methods (e.g., [18]), train a classifier with the appropriate samples in order to

4 Analogous to optical flow, where images are aligned based on a temporal adjacency, SIFT flow
[3] can be exploited to match similar structures across different scenes. Recently it has been
shown that parametric models such as affine motion, vignetting, and radial distortion can be
modelled using the concept of Filter Flow [4].
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(a) object detection (b) Object Flow

Fig. 2. Object detection (a) is usually formulated as a binary classification problem distinguishing
the object of interest from the background class. In contrast, Object Flow considers the problem
of learning object displacement locally.

distinguish the object-of-interest from the background, i.e. formulate the task as a binary
classification problem. In comparison with the typical object detection approaches, we
consider the problem of detecting the displacement and the direction of a moving object
locally, i.e. within a certain region Ω, (see Fig. 2). Within this region, pairs of patches
from different time intervals are classified. Nevertheless, the size of the search region
Ω has its own role in the fulfilment of the object localization and direction estimation
task. Especially in the case of abrupt motion or low frame rate video (see Sec. 3.1) an
optimal estimation can be achieved by having a quite large search region. However, this
size comes in contrast with the required computational complexity and might yield to
ambiguities when more than one object are present in the scene.

Problem Formulation. We formulate the learning problem as a problem of learn-
ing a distance function, (see [19] for a recent overview). Our technique was inspired
by the work of Hertz et al. [20], which learns a distance function for image retrieval by
training a margin-based binary classifier (such as Support Vector Machines or Boosting
methods) using pairs of samples. Positive pairs derived from the ”same” class whereas
negative pairs are samples drawn from two ”different” classes. The learning problem
is then formulated on the product space, i.e., C : X × X → Y = [−1 , 1]. Thus, the
trained classifier C(x1, x2) is supposed to give high confidence if the two samples x1
and x2 are similar, and low confidence otherwise.

Learning Object Flow. The overall learning approach is depicted at Fig. 3. For
training a maximum margin classifier on object displacement in an off-line manner, a
pool of appropriate samples has to be created. These samples should contain tempo-
ral information from pairs of images from the positive X+ and the negative X− set
respectively.

Positive set X+. A positive sample contains information about the way that object
appearance transforms through time. Therefore, this sample is created by collecting two
patches that derive from two different frames and contain the object under study i.e.

X+ = {〈x?t , x?t+1〉 | x?t , x?t+1 ∈ Ω(i) and correspond to an object} (1)
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Fig. 3. Learning object’s displacement is achieved by training a classifier with positive and nega-
tive labelled samples, which are locally extracted and contain temporal information.

The labelling of the object represented by the rectangles x? and x?t+1 can be accom-
plished using some reliable information, such as human labelling (ground truth), or the
output from a high precision/recall detector or tracker.

Negative set X−. The negative set is divided into two subsets, i.e. X− = X−obj ∪
X−back. The first subset of negative samples contains the object in the current frame with
a patch that contains a portion of it in a different frame i.e.

X−obj = {〈x?t , x
(i)
t+1〉 | x?t , x

(i)
t+1 ∈ Ω(i) and x?t+1 correspond to an object} (2)

These training samples assist the classifier to suppress local maxima around the real
object region. On the other hand, the second subset of negative samples contains regions
from the background. These samples are particularly useful, when dealing with difficult
scenarios, since they can force the classifier to respond with low confidence values on
empty regions i.e.

X−back = {〈x(i)t , x(j)
t 〉 | x

(i)
t , x(j)

t ∈ Ω(i)} (3)

Examples of a positive and negative samples are depicted in Fig. 4.

(a) pos. samples X+ (b) neg. samples X−
obj (c) background samples X−

back

Fig. 4. Illustrative example of the typical training samples for training a classifier on Object Flow.
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Classifier. In this paper we use the approach of boosting for feature selection. A
classifier can be trained in an off-line [21] or in an on-line [16] manner. In order to use
pairs of images as an input, we follow the empirical tests of possible adaptations, pro-
posed by Hertz et al. [20]. An approach for learning how the object appearance alters
through time is the concatenation of the two patches. Another intuitive approach is by
finding the absolute difference of the vectors representing the two patches. Our empiri-
cal tests indicate that this classifier works better with the first approach. As features we
use the classical Haar-like features [21].

2.2 Flow Estimation

Object Flow is a vector field. In order to estimate it, for each point x, y in the image a
local image patch x is extracted and the displacement magnitude Dobj(x) and the angle
φobj(x) can be calculated. More specifically, let C(x, x′) be the classifier response for
a pair of patches, where x is a patch in the current image and x′ is a patch belonging
to the neighbourhood region of local patches Ω in the previous image. We define the
displacement ∆x and ∆y of an object on the x and y directions respectively, as the
weighted sum of distances within the local region Ω. More formally,(

∆xobj(x)
∆yobj(x)

)
=

1∑
x′∈Ω C(x, x′)

∑
x′∈Ω

C(x, x′)
(
dx
dy

)
(4)

where, dx and dy are the x and y axis distances of the patch x from x′. Based on
this, magnitude and angle can be calculated as,

Dobj(x) =
√
∆xobj(x)2 +∆yobj(x)2, φobj(x) = tan−1

(
∆yobj(x)

∆xobj(x)

)
. (5)

In order to reduce outliers, local region displacements within the region Ω have to
extend a significant positive classifier response i.e.,

¯Cobj(x) =
1

|Ω|
∑
x′∈Ω

Ĉ(x, x′)2, where Ĉ(x, x′) = max(0, C(x, x′)). (6)

Summarizing, Object Flow is only reported, if the average classifier response is
above some user defined threshold, which controls the sensitivity, i.e., C̄obj(x) > θ.

Illustrative Example. Fig. 5 depicts the Object Flow and the details for two spe-
cific regions. The trained classifier is evaluated on pairs of patches, using a reference
patch at time t and patches from the corresponding local regions, Ω(1) and Ω(2), re-
spectively at time t+ 1. We use a grid of overlapping patches of the same size, centred
at the reference patch. As we can observe in the resulting 3-D plot for the region Ω(2),
high confidence values represent the regions, on which the object is likely to occur at
time t + 1. On the other hand, the confidence values are very low for the region Ω(1),
since there are no objects inside. For visualizing the angle φobj(x) and the displace-
ment Dobj(x) (see Eq. (5)), we use the hue and saturation channel from HSV color
space respectively.



6 Constantinos Lalos, Helmut Grabner, Luc Van Gool and Theodora Varvarigou

(a) input images (b) Object Flow

(c) detail for Ω(1) (blue) (d) detail for Ω(2) (red)

Fig. 5. Classifier responses for the regions Ω(1) and Ω(2) (a). Low classification responses are
obtained if no object is present (c). In contrast, a clear peak, which shows the displacement of a
particular object, is shown (d). The final Object flow field (b) is based on these local responses.

3 Experimental Results

In this section we present qualitative and quantitative experimental results of the Object
Flow on different objects and datasets, including walking pedestrians, faces and moving
coffee mugs. The efficiency of our approach is demonstrated using difficult scenarios
that involve low frame rate and motion blurring from a moving camera. Furthermore,
we compare our results with common methods, such as an object detector, tracker and
optical flow. The proposed motion representation can be used either in a static or in
a moving camera configuration. Throughout the experiments we use a dense Grid that
comprises of 81×81 overlapping and equally sized cells and we set a threshold θ = 0.35
(see Sec. 2.2). All experiments are performed on a 2.67 GHz PC with 4 GB RAM.

3.1 Object Flow for Pedestrians

We captured a dataset from a public camera located on Abbey road in London5, which
consists of 49, 000 frames. This dataset, obtained at a resolution of 384 × 284, is a
challenging low frame rate scenario (∼ 6 fps) that contains a complex background
with various moving objects (e.g., cars). Therefore, we use a region Ω that comprises
of 12 × 12 cells, since object motion is quite abrupt due to low frame rate. The first
40, 000 frames of this dataset are used for collecting the appropriate training samples
(see Sec. 2.1) and the remaining ones are used for evaluation. More specifically, the

5 http://www.abbeyroad.com/webcam/, 2010/03/03.
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Fig. 6. In this experiment we present the benefits of Object Flow. Optical flow approaches dis-
orient when similar objects are moving in the same/different direction with the object-of-interest
(third row). In addition, human detection approaches do not have a constant detection rate (fourth
row). Object tracking also suffers from drifting in complex environments (fifth row). Object Flow
(second row) can simulate the motion field of a moving object correctly, by being able to focus
only on the object under study.

results described in this section can be produced using a single classification approach
that is trained off-line using a pool of |X+| ≈ 2, 000 positive, |X−obj | ≈ 15, 000 negative
object samples and numerous negative samples X−back from the background.

We perform illustrative comparisons with optical flow, human detection and object
tracking methods. We use the approach described at [5] to calculate optical flow, in order
to evaluate its performance against the proposed Object Flow technique. For human
detection and tracking we adopt the approaches described at [22] and [16] respectively.
All the competing techniques are used without modifying any of the input parameters
given in their original implementation.

As it can be observed at Fig. 6, our approach has a good performance in human lo-
calization. In addition, direction estimation for the moving objects-of-interest (second
row) is the same with the one provided by the aforementioned optical flow approach,
which focuses in all the moving objects in the scene (e.g. cars, third row). On the other
hand, combining optical flow with an object detection approach (fourth row) may lead
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Fig. 7. In this experiment we train the classifier to deliver Object Flow for different object classes
including faces and a coffee mug. The first and third row depict frames from different test
sequences (camera movement, motion blur and multiple objects). The second and fourth row
present the estimated Object Flow, respectively. (Video is availible at the authors’ web-page.)

to possible pitfalls, since detection approaches do not have a constant detection rate, and
thus have limited effectiveness in difficult environments. Similarly, tracking approaches
(fifth row) disorientate on complex backgrounds, since objects of similar color or struc-
ture may appear inside the scene.

3.2 Object Flow for Different Objects

The performance of Object Flow is also tested using two different object classes, i.e.
faces and a specific mug. The algorithm is evaluated on scenarios that contain abrupt
motion and on a moving camera configuration. In detail, we use three different video
sequences that consist of 1, 200 frames, where 1, 000 frames are used for training the
classifier and 200 frames for testing. Two sequences were captured from a moving
indoor camera and contain a moving face and mug respectively. Another sequence was
captured from a static indoor camera and contains two moving faces. These datasets
were taken at 25 fps with a 704× 576 resolution using an AXIS 213 PTZ camera.

We evaluate our approach for each patch x using a region Ω that comprises of
6 × 6 cells. For the mug and the face sequence the classifier was trained using a pool
of |X+| ≈ 1, 000 positive, |X−obj | ≈ 4, 000 negative object samples and numerous
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negative samples from the background. For creating face samples, an off-the-shelve
face detection approach is adopted6.

Illustrative results are depicted in Fig. 7. As it can been seen, the Object Flow has
the ability to remain focused on the face and the mug even in cases of abrupt camera
motion (second and fourth row). Furthermore, the proposed method can deal with more
than one objects-of-interest present at the same scene (see Fig. 7 first and second row,
in third and fourth column).

3.3 Quantitative Comparison

We adopt the coffee mug dataset, which is a moving camera scenario and consists of 200
frames (see Sec. 3.2). On this sequence, ground truth is created by manually labelling
the values for the angle and the displacement. For each frame we calculate the absolute
error between the ground truth and the values provided by our approach. Since there is
only one object-of-interest in the scene, we consider the angle φobj(x) and displacement
magnitude Dobj(x) of the patch x, for which the classifier has the maximum response

¯Cobj(x), according to Eq.(6).
For comparison we also implemented a simple baseline approach that combines ob-

ject detection and optical flow. In that case, the displacement and angle are estimated
by finding the average optical flow within the region of a detection (i.e. if a detec-
tion is present). Therefore, we first, train a classifier [21] using 1, 000 positive samples
for the object and a negative set that contains numerous object-free samples from the
background. The resulting detections are fused together by applying non-maximal sup-
pression. Finally, Lucas-Kanade method [2] for optical flow estimation is adopted.

For all the frames in the sequence, we calculate the mean absolute displacement
and angle error. More specifically, the average displacement error is decreased from 12
pixels for the baseline approach to 9 pixels using our approach. Similarly, the mean
angle error is decreased from 75◦ to 62◦, respectively. The angle error seems to be
quite large, which is quite reasonable, by taking into account that the object and camera
change abruptly their direction in the chosen test sequence.

4 Conclusions

In this paper, we present the Object Flow, a method for estimating the displacement
of an object-of-interest directly. Our approach is similar to optical flow, but it has the
additional ability to ignore other irrelevant movements in the scene. This is achieved by
training a classifier on the object displacement.

Experimental results demonstrate that the proposed approach achieves robust per-
formance for different object classes, including pedestrians and faces. We are confident
that Object Flow is useful for a variety of applications, such as object tracking or scene
understanding. However, one current limitation is the computational complexity, which
is going to be addressed in a future work.

6 http://opencv.willowgarage.com/wiki/, 2010/04/28



10 Constantinos Lalos, Helmut Grabner, Luc Van Gool and Theodora Varvarigou

Acknowledgments. This research was supported by the European Community Seventh
Framework Programme under grant agreement no FP7-ICT-216465 SCOVIS.

References

1. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17 (1981) 185–203
2. Kanade, T., Lucas, B.: An iterative image registration technique with an application to stereo

vision. In: Proc. Int. Joint Conf. on Artificial Intelligence. (1981) 674–679
3. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.: Sift flow: Dense correspondence across

different scenes. In: Proc. ECCV. (2008)
4. Seitz, S., Baker, S.: Filter flow. In: Proc. ICCV. (2009)
5. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic

Huber-L1 optical flow. In: BMVC, London, UK (2009)
6. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Proc. CVPR. (2009)
7. Sun, D., Roth, S., Lewis, J., Black, M.: Learning optical flow. In: Proc. ECCV. (2008)
8. Wu, Y., Fan, J.: Contextual flow. In: Proc. CVPR. (2009)
9. Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In: Proc. ICCV.

(1998)
10. Jean-Marc Odobez, Daniel Gatica-Perez, S.B.: Embedding motion in model-based stochastic

tracking. IEEE Transactions on Image Processing 15 (2006) 3515 – 3531
11. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and

stability analysis. In: Proc. CVPR. (2007)
12. Santner, J., Werlberger, M., Mauthner, T., Paier, W., Bischof, H.: FlowGames. In: 1st Int.

Workshop on CVCG in conjunction with CVPR. (2010)
13. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In:

Proc. CVPR. Volume II. (1999) 246–252
14. Leibe, B., Schindler, K., Gool, L.V.: Coupled detection and trajectory estimation for multi-

object tracking. In: Proc. ICCV. (2007)
15. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Gool, L.V.: Robust tracking-

by-detection using a detector confidence particle filter. In: Proc. ICCV. (2009)
16. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR. Volume 1. (2006)

260–267
17. Stalder, S., Grabner, H., Gool, L.V.: Beyond semi-supervised tracking: Tracking should be

as simple as detection, but not simpler than recognition. In: Proc. IEEE WS on On-line
Learning for Computer Vision. (2009)

18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR.
Volume 1. (2005) 886–893

19. Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation.
IEEE Trans. on PAMI (2008)

20. Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In:
Proc. CVPR. Volume 2. (2004) 570–577

21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Proc. CVPR. Volume I. (2001) 511–518

22. Prisacariu, V., Reid, I.: fasthog - a real-time gpu implementation of hog. Technical Report
2310/09, (Department of Engineering Science, Oxford University)


