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Abstract

This paper demonstrates how to reduce the hand label-
ing effort considerably by 3D information in an object de-
tection task. In particular, we demonstrate how an efficient
car detector for aerial images with minimal hand labeling
effort can be build. We use an on-line boosting algorithm
to incrementally improve the detection results. Initially,
we train the classifier with a single positive (car) exam-
ple, randomly drawn from a fixed number of given samples.
When applying this detector to an image we obtain many
false positive detections. We use information from a stereo
matcher to detect some of these false positives (e.g. detected
cars on a facade) and feed back this information to the clas-
sifier as negative updates. This improves the detector con-
siderably, thus reducing the number of false positives. We
show that we obtain similar results to hand labeling by it-
eratively applying this strategy. The performance of our al-
gorithm is demonstrated on digital aerial images of urban
environments.

1. Introduction

Building an efficient and robust framework for object de-
tection from aerial images has drawn the attention of the vi-
sion community for years, e.g. [7, 20, 26]. In particular the
problem of car detection from aerial images has a variety of
civil and military applications, for example transportation
control, road verification, land use classification for urban
planning or military reconnaissance, etc. With the avail-
ability of 3D virtual worlds on the World Wide Web, car
detection in aerial images has an additional utilization: In
order to provide an adequate undisturbed texture for visual-
ization, it is crucial to remove cars from the images and the
3D model.

In recent years, boosting [21] has become a popular algo-
rithm for the detection of objects (e.g., faces, persons, cars
etc.). A variety of boosting algorithms have been developed
for solving machine learning problems [4, 5, 21]. Follow-
ing the remarkable success of the face detector, introduced

by Viola and Jones in [23], boosting techniques have been
widely used for solving different recognition problems in
the computer vision community.

For classification based car detection the car model is
usually created from image exemplars, which consist of
gray values or texture features. Appearance models are cre-
ated by collecting statistics over those features. The classi-
fier architecture can be a single classifier, a classifier com-
bination or a hierarchical model. The detection is done ex-
haustively for each image region by computing the feature
vectors and classifying them against the model features. Al-
though these approaches have certain advantages (most no-
tably are the high recognition rates) there are also draw-
backs. Notably, the feature calculation and classification
is computationally expensive. Moreover and more severe,
there is a need of an enormous amount of labeled data for
training the detector. The training set should provide a good
coverage over the space of possible appearance variations of
the data. This is highly time consuming and needs human
interaction to build the training data in advance and limits
the possibility to diversify the variances of training samples
during the training phase.

The goal of this paper is to facilitate the problem of ob-
taining a large number of labeled samples by using 3D in-
formation as a teacher. The basic idea is to use 3D infor-
mation (obtained from a stereo matcher) to provide labels
for an on-line boosting algorithm [6]. We start with a clas-
sifier that is trained from a single randomly selected car im-
age out of a database of positive samples. Of course this
classifier delivers a lot of false positives, when classifying
a whole image. By using the 3D information we can se-
lect obvious negative examples (e.g. detections that lie on
facades). Since we use an on-line boosting strategy the clas-
sifier can be immediately updated and applied to the image,
thereby always selecting the most informative negative sam-
ples. In fact, it has been shown in the active learning com-
munity [18], that it is more effective to sample the current
estimate of the decision boundary than the unknown true
boundary. This is exactly achieved by our approach.

The outlined approach is similar to the work of Nair and
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Clark [14] and Levin et al. [10]. Nair and Clark propose
to use motion detection to obtain the initial training set and
then use Winnow as a final classifier. Levin et al. use the
so called co-training framework. The idea is to start with a
small training set and to increase it by using the co-training
of two classifiers operating on different features. Our ap-
proach is in spirit very similar to the conservative learning
method proposed in [19]. They have demonstrated that by
using a combination of generative and discriminative clas-
sifiers and a conservative update strategy a person detector
can be learned in an unsupervised manner. In our work we
also use such a conservative update strategy.

The paper is structured as follows: In the next section we
briefly describe the data and the 3D algorithm. We review
the on-line boosting method. In Section 3 we describe our
approach in detail. Section 4 presents extensive experimen-
tal results comparing our algorithm to results obtained by
hand labeling. Finally we conclude and present some ideas
for further research.

2. Preliminaries

Before we introduce our approach, we need to discuss
the two main components of the system. These are the use
of 3D information, which is provided by a height model and
the on-line learning of the car detector.

2.1. 3D Height Model from Aerial Images

The 3D data, that is used for learning of the image
based recognition, is derived from high resolution aerial
images such as ones are produced by the UltraCamD

camera1 from Microsoft Photogrammetry. Each image
has a resolution of 11500 × 7500 pixels. In order to
enable robust and fully automatic processing of the data,
a high inter-image redundancy is ensured by capturing
images at 80% along-track overlap and 60% across-track
overlap. The ground sampling distance (GSD) for the
digital aerial images is approximately 8 cm. The exterior
orientation of the images is achieved by a fully automatic
process as described in [25]. Using the camera orientation
parameters an area based matching algorithm produces a
dense range image for each input image. The range images
are computed from three input images (a reference image
and it’s two immediate neighbors) using a plane sweeping
approach. The plane sweeping uses the normalized cross
correlation as similarity measure and produces a so-called
3D depth space which contains the depth hypotheses and
their associated correlation values. The final range image
is computed using a semi-global optimization approach
proposed by [8]. These range images have a radiometric
resolution of 16 bit. In Figure 1(a) a part of the final range

1http://www.vexcel.com/products/photogram/ultracam/index.html
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Figure 1. A small part of a final range image from 3D reconstruc-
tion with a radiometric resolution of 16 bit (a), and the correspond-
ing RGB image with ground truth overlaid as red rectangles (b).

image and its corresponding RGB image can be seen.

2.2. On-line Learning for Object Detection

The basic idea is to train a binary classifier which can
distinguish the class of objects from the background. Viola
and Jones [23] use boosting to select a small subset from
an enormous pool of simple image features to form such a
classifier. Grabner and Bischof [6] use an on-line version
of boosting in order to perform feature selection. This
allows to continuously update the classifier when new
examples are available. Thus, the classifier is able to adapt
to a local scene. In the following we summarize the overall
ideas of boosting, boosting for feature selection and finally
the on-line variants.

Off-line Boosting for Feature Selection

Boosting is a method, which combines several weak learn-
ing algorithms to form a strong one. Many researchers have
analyzed and applied boosting for different tasks. There are
several variants of boosting which have been proposed (e.g.
Real-Boost [5] and LP-Boost [4]). Our focus lies on the
discrete AdaBoost algorithm, which was proposed by Fre-
und and Schapire [5]. It adaptively re-weights the training
samples instead of re-sampling them.

The algorithm basically works as follows: We have a
training set X = {〈x1, y1〉, ..., 〈xL, yL〉 | xi ∈ Rm, yi ∈
{−1,+1}} with positive and negative labeled samples and
an initial uniform distribution p(xi) = 1

L over the exam-
ples. A weak classifier hweak is trained using X and p(x).
The weak classifier has to perform only slightly better than
random guessing. Therefore, the error rate of a classifier
for a binary decision task must be less than 50%. The
classifier is obtained by applying a common learning algo-
rithm. The weak classifier hweak

n then gets a weight as-
signed αn = 1

2 · ln
(

1−en

en

)
, where en denotes the error of

the classifier. Depending on the performance of the weak



classifier, the probability p(x) is updated. For misclassified
samples, the corresponding weight is increased, while for
correctly classified samples the weight is decreased. There-
fore the algorithm focuses on those examples, which are dif-
ficult to learn. This process is iteratively repeated. A new
weak classifier is added at each boosting iteration, until a
certain stopping criterion is met.

From the obtained set of N weak classifiers hweak
n (x), a

strong classifier hstrong(x) is generated, by a linear combi-
nation:

conf(x) =
∑N

n=1 αn · hweak
n (x)∑N

n=1 αn

(1)

hstrong(x) = sign(conf(x)) (2)

As conf(x) is bounded by [−1, 1], it can be interpreted
as a confidence measure. The higher the absolute value, the
more reliable is the result.

Boosting can also be applied for feature selection, as in-
troduced by Tieu and Viola [22]. The basic idea is that fea-
tures correspond to weak classifiers. By boosting, an infor-
mative subset from these features is selected.

Training for feature selection proceeds similar to the
described algorithm above. From a set of possible features
F = {f1, ..., fk}. In each iteration n a weak hypothesis
is built from the weighted training samples. The best one
forms the weak hypothesis hweak

n which corresponds to the
selected feature fn. The weights of the training samples are
updated with respect to the error of the chosen hypothesis.

On-line Boosting for Feature Selection

Selecting features by boosting, as mentioned before, needs
all training samples in advance, since it works off-line. In
our approach an on-line feature selection algorithm [6],
which is based on an on-line version of AdaBoost [17] is
used. This means that each boosting step of the off-line al-
gorithm has to be performed on-line. Therefore, the weak
classifiers have to be updated every time a new training
sample is available. This allows the training samples to be
adapted to the current performance of the classifier, result-
ing in an efficient way to generate the training set.
The basic idea of on-line boosting is that the difficulty of a
sample can be estimated by propagating it through the set
of weak classifiers. One can think of this, as modeling the
information gain with respect to the first n classifiers and
code it by an importance factor for doing the update of the
n + 1-th weak classifier. As proved in [17], when given the
same training set, the result of the classifier using on-line
boosting converges statistically to the one obtained by off-
line boosting as the number of iterations N → ∞. When
presented the same training set multiple times, on-line and
off-line boosting achieve the same results.

For selecting features by on-line boosting, “selectors”
are introduced. The on-line boosting is then not directly per-
formed on the weak classifiers, but on the selectors. For that
purpose, a selector hsel(x) consists of a set of M weak clas-
sifiers {hweak

1 (x), . . . , hweak
M (x)} and selects the one with

minimal error.

hsel(x) = arg min
m

e
(
hweak

m (x)
)

(3)

When training a selector, its M weak classifiers are
trained and the one with the lowest estimated error is se-
lected. Therefore, a selector can also be seen as a classifier
which switches between the weak classifiers. As in the off-
line case, each weak classifier corresponds to a single fea-
ture, i.e. the hypothesis generated by the weak classifier is
based on the response of the feature.

The workflow of the AdaBoost on-line training frame-
work used for feature selection is as follows: A fixed num-
ber of N selectors hsel

1 , .., hsel
N are initialized with random

features. The selectors are updated, as soon as a new train-
ing sample 〈x, y〉 is available, and the weak classifier with
the smallest estimated error is selected. For the updating
process of the weak classifier any on-line learning algorithm
is applicable. Finally, the weight αn of the sample is up-
dated and passed to the next selector hsel

n+1. The weight is
increased if the sample is misclassified by the current selec-
tor or decreased otherwise.
A linear combination of the N selectors gives the strong
classifier:

hstrong(x) = sign
(∑N

n=1 αn · hsel
n (x)∑N

n=1 αn

)
(4)

For more details see [6]. Contrary to the off-line version,
the on-line classifier is available at any time.

Image Features

By using features instead of pixel values as input to a learn-
ing algorithm, the inter-class variability can be reduced. On
the other hand the out-of-class variability can be increased.
In our work we use Haar-like features [23], orientation his-
tograms [9] and a simple version of local binary patterns
[16]. By using integral images [23] as a representation, the
computation of these feature types can be done very effi-
ciently. This makes fast exhaustive template matching pos-
sible when scanning over the whole image.

Since we know the ground sampling distance of the im-
age, the search for cars at different scales is not necessary,
but cars can appear at any orientation. Instead of training
the classifier with different orientations we train it at one
canonical orientation, and evaluate it by rotating the im-
age with increments of 15 degrees. Also the detector could
be rotated by computing the features at different angles for



Figure 2. A schematic diagram of our proposed algorithm. Af-
ter initialization with a single positive sample the iterative training
process is started. The detected cars from the current classifier are
verified using the range images. From this verification step, we
generate negative samples, for which we are sure they are not cars,
and update the classifier accordingly. After that, the classifier is
evaluated on the positive samples and updated with the worst per-
forming one, if it is not detected as car. This autonomous process
is repeated until a stopping criterion is fulfilled (e.g. a maximum
number of positive updates is reached).

the detection process. To speed up the process further in
[11] and [12] the use of rotated Haar-like feature techniques
were proposed. A trained classifier is converted to work at
any angle, so rotated objects can be detected. A real-time
version for the rotational invariant Viola-Jones detector has
been reported in [24].

3. Autonomous Learning of a Car Detector

The main task is to train a classifier which is then used to
detect objects (cars) in an image by exhaustively scanning
the whole image. Our intention is to improve the classi-
fier incrementally and to avoid hand labeling large amount
of data. Therefore we use a variation of the previously de-
scribed on-line boosting classifier [15], where the user la-
bels informative samples for doing positive and negative
updates.

The aim of our approach is to minimize this hand la-
beling effort and to make learning autonomous. Therefore,
we propose to start with a set of labeled positive examples.
Note, that these examples have to be labeled only once and
have to cover the variances of the object, but can then be
used for all new scenes. Our goal is to obtain a compact
and efficient classifier for a particular scene.

A schematic diagram of our autonomous learning strat-
egy is depicted in Figure 2. The main point is how we can

autonomously generate negative samples from the image
and do not introduce too much label noise (i.e. label patches
which contain an object as negative sample). We provide
the system with a relatively small set of 25 or 100 posi-
tive labeled images, respectively and continuously bootstrap
negative samples directly from the aerial image. The clas-
sifier is initialized with a randomly drawn single positive
sample. After that, the current classifier hstrong

t at time t is
evaluated on a randomly rotated training image. This clas-
sifier provides a set Dt of locations where it detects cars in
the image. But only a subset Dt

corr ∈ Dt are correct de-
tections, the others are false positives Dfalse

t . We aim to
identify these false positives robustly and use them as nega-
tive updates for the classifier. The verification is performed
on the according 3D range data of the aerial image. We
use the simple but powerful and robust assumption, that a
car, if it is a car, has to be located on similar height values
in the currently visited detection window. To take also im-
portant background information into account, the examined
region is chosen larger than the dimension of the car detec-
tion window. Therefore, we analyze the height data in this
enlarged patch window at the location of a detection and fit
a plane to these values by using a robust alpha-trimming es-
timator [13]. From the robust estimate of the plane for the
range image patch, we verify the detection on the basis of
its slope. If the slope of this plane above a certain thresh-
old, we consider this patch as a possible negative update.
In each iteration, we try to find one false positive detection
to retrain the classifier with a negative update. Note, if we
consider a false positive as a correct detection, this does not
perturb the on-line learning process. We only update false
detections where we are confident that they do not corre-
spond to cars. At the moment we cannot robustly generate
new positive updates from the range image, we evaluate the
classifier on all the hand labeled positive examples in each
iteration of the learning process. To avoid drift, we perform
a positive update of the classifier, if one sample is not cor-
rectly detected as a car. In each iteration, only one positive
update is performed.
Summarizing, we have an iterative process, that can au-
tonomously identify false positive detections and performs
a negative update of our on-line learning classifier. This
ensures a decrease of the false positive rate. In order to sta-
bilize the true positive rate we evaluate the positive hand
labeled samples. The set of positive samples is not updated
yet. The sketch of the autonomous on-line training process
is outlined in Algorithm 1.

After the training process is finished, the detection is per-
formed by applying the trained classifier exhaustively on
test images. To detect various possible orientations of the
cars in the aerial images, we rotate the test images in steps
of 15 degrees. If the classifier returns a confidence value
for a patch above a certain activation threshold, this patch is



Algorithm 1 Autonomous On-line Training Process
Initialize parameters for the classifier;
while Non-Stop-Criteria do

Evaluate the current classifier;
3D Teacher: Verify the detections using 3D data;
Perform a negative update if the verification fails;
Evaluation of the positive hand labeled samples;
if Positive sample is detected as false negative then

Perform a positive update with this sample;
end if

end while

considered as detected. The lower the threshold, the more
likely an object is detected as a car but on the other hand
the more likely a false positive occurs. For a higher acti-
vation threshold the false positives decrease at the expense
of the detections. The detection process computes a high
number of detections, some have overlap and various orien-
tations. Therefore a post processing stage is needed to re-
fine and combine these outputs. In [15] a mean shift based
clustering is proposed. In our approach we apply a com-
mon non-maximum suppression technique to compute lo-
cal confidence extrema that describe the detections and the
according orientations.

4. Experiments

The aim of our experiments is to demonstrate the ro-
bustness of our framework for car detection from aerial
images. Therefore we compare our autonomously trained
classifier with the interactive approach presented in [15].
For a quantitative evaluation, we use recall-precision curves
(RPC) [1]. #TP describes the number of true positives,
#FP is the number of false positives. #nP defines the
total number of cars extracted from the ground truth. The
precision rate (PR) shows the accuracy of the prediction of
the positive class. The recall rate (RR) shows how many of
the total number of positive samples we are able to iden-
tify. The F-Measure (Fm) is the harmonic mean. It can
be considered as trade-off between recall rate and precision
rate. For evaluation of our detector, we plot the recall rate
against 1 − precision.

PR =
#TP

#TP + #FP
(5)

RR =
#TP

#nP
(6)

Fm =
2 · RR · PR

RR + PR
(7)

Note that we define a correct detection, if and only if the
center of the detection corresponds to the annotated ground

truth car with a maximum city block distance of approx-
imately 1.8m (22 pixels in the examples). The computa-
tion of the non-maximum suppression is performed with
the same value for the local neighborhood. In addition we
require that the orientation of the detection has to match
within 16 degrees. In contrast to [15], we use the detected
orientation additionally to the location as a criterion for the
evaluation in our results. For all experiments these values
are kept constant.

4.1. Data Set

For evaluation of our proposed car detector, we use aer-
ial images of the city center of Graz, Austria. The images
were acquired by the UltraCamD camera developed by
Microsoft Photogrammetry.
As we know the ground sampling distance of the aerial im-
ages (see Section 2.1), we can specify a fixed sized rectan-
gle which reflects the size of a typical car. The size of the
patch has to be carefully chosen to cover the area, which
contains a car in the middle and four small surrounding
bands. This is done in order to include some context infor-
mation of a car so that the car is considered together with its
surrounding background. Usually the boundary of a car is
a rectangle with the length twice its width. In our case, we
have chosen the patch size to be 35× 70 pixels or 2.8× 5.6
meters, respectively.
In Figure 1(b) a typical test image with the ground truth data
overlaid as red rectangles is shown.
For the training and testing process, we use two non-
overlapping aerial images. The positive hand labeled sam-
ples are extracted from the hand labeling learning process.

4.2. Improving the Detector

We start with an untrained classifier, which is initialized
with a single positive sample. The classifier improves on-
line after evaluation and verification by using our proposed
approach. During this training process we autonomously
generate negative training samples. The positive hand la-
beled data sets contain 25 and 100 samples, respectively.
These positive images samples should cover the main ap-
pearance of cars. In Figure 4 subsets of the positive and
negative samples that are used for updating are shown. The
hand labeling training process takes about 2 hours of per-
manent human interaction. The learning process is stopped
after 220 positive updates.
Both, the interactive and autonomous learning strategy re-
sult in an increasing number of positive and negative up-
dates. In case of autonomous learning the number of pos-
sible negative updates is slightly decreasing during the im-
provement of the detector, because the number of false pos-
itive detections is decreasing over training time.
In Figure 3 the performance of the autonomous training
process at different stages of the learning process is given.



Figure 3. Performance of the autonomously trained classifier ver-
sus training time.

(a) (b)

Figure 4. The positive (a) and negative (b) samples used for up-
dating the classifier. The positive samples are hand labeled and
given in advance, while the negative samples are generated au-
tonomously.

The performance improvement over training time of the
trained classifier can be seen. In contrast to manual training
we can train our classifier without any human interaction
apart from the construction of the set of positive samples.
Comparing our learning curve to the results given in [15],
we obtain a similar performance in a fractional amount of
time. Note that for a negative update of the classifier the
slope of the fitted plane to the height values is set to be
higher than 10 degrees. This threshold gives a trade-off be-
tween finding negative samples and the probability that a
car is wrongly used as a negative update. Furthermore it
guarantees a conservative update strategy, since we rather
make no update than using a wrong one.

4.3. Performance Evaluation

In this section we show quantitative results of our ap-
proach. The classifier is evaluated on sub-images of a size
4500 × 4500 pixels. These sub-images are extracted from
the data set described in Section 4.1. In a previous hand
labeling phase, we marked all cars in each sub-image to
generate a ground truth. The ground truth set includes the

Figure 5. Recall-Precision Curves comparing the results of a man-
ually trained classifier with our autonomously trained one after a
constant number of positive updates. For the autonomous learning
25 and 100 various positive hand labeled samples were used.

locations and orientations of 423 cars. As shown in Figure
1(b) and 7, the images contain complex backgrounds, cars
with low contrast and cars occluded by buildings or vegeta-
tion and there are objects which look like cars. We marked
a car as positive if more than 50% of its area is visible.
For detection we use a 90% overlapping patch grid on each
sub-image. Additionally these sub-images are rotated in
steps of 15 degrees to get results for each location and ori-
entation. After that, we apply a non-maximum suppression
as a post processing step on the obtained detection results.

Figure 5 shows the resulting recall-precision curves of
the trained classifiers with a constant number of positive up-
dates. For comparison with the manually learned classifier
we stopped our autonomous learning process after 220 pos-
itive updates.
We compare our detection results to the results of the hand
labeling approach using sets of 25 and 100 positive labeled
cars. The plots show that our autonomous learning strat-
egy reaches similar performance compared to hand labeled
training. This is explained by the fact that the autonomous
approach uses important negative updates to improve the
classifier at each iteration.
Again, note that learning the classifier by hand labeling
needs approximately 2 hours of human interaction. It is
obvious that the negative update is drawn more or less in
a random manner. In this case the improvement of the de-
tector is decelerated.
The autonomous car detector improves its ability to detect
cars fast and without any human interaction. In terms of the
detection rate, we achieve slightly worse results than the
presented rates in [15], because we additionally verify the
correct orientation for each detection.
In Figure 6 the F-Measure versus the activation threshold is
given. By using only 25 cars as possible positive updates,



(a)

Figure 6. F-Measure versus the activation threshold for manual and
autonomous learning.

we obtain the lowest activation threshold. The hand label-
ing process results in a high activation threshold. The lower
the number of samples in the positive car data set, the lower
the activation threshold. This results from the relatively low
variance of the positive hand labeled set. To obtain the de-
tection rates of hand labeled training, the number and the
variance of samples respectively for positive updates have
to be increased significantly.
By using context information such as street layers, the de-
tection rates of our system could certainly be improved.
As mentioned before, cars are undesired for large scale 3D
reconstruction of urban environments. Therefore we re-
move the detected cars from the aerial images with an in-
painting approach based on Total Variation models [3]. The
in-painting results of the test images are shown in Figure 7.

5. Conclusion and future work

We have proposed a framework for learning a car detec-
tor for aerial images autonomously by making use of ad-
ditional 3D data. The on-line boosting technique offers a
fast update and an evaluation of the current classifier at any
time.
By iteratively updating the on-line classifier with previously
labeled positive samples and automatically generated nega-
tive samples using range images, the amount of human in-
teraction can be minimized drastically.
We have also shown, that only a small set (25 samples)
of hand labeled positive examples is sufficient for training.
Our approach obtains similar results as the hand labeling
process, which suffers from an enormous effort of human
interaction. For future work, our approach will be extended
to use additional context information like street layer or
various area classification results. An on-line boosting ap-
proach based on rotational invariant features would improve

(a) (b)

(c) (d)

(e) (f)

Figure 7. In (a) and (b) parts of our test images are shown. The
ground truth is indicated by red rectangles around the cars. The
detection results of our classifier (blue) are compared to the ground
truth in (c) and (d). The classifier was autonomously trained with
220 positive and 217 negative updates. The in-painting results are
shown in (e) and (f).

the training and detection time.
An elaborated in-painting strategy (e.g. [2]) will give im-
proved results if cars are detected on complex backgrounds,
such as road signs and curbs, or if the detections are par-
tially occluded by trees and facades.
Moreover, the redundancy due to high overlap in the aerial
images can be exploited. A major next step is to include
also positive updates. Following venues are currently uti-
lized: Starting from a small set of hand labeled samples
and using the available multi-view images, we can generate
positive update samples by using new detected cars in other
images. We are also exploring co-training strategies by us-



ing extracted height field features to construct a shape based
car model out of the proposed appearance driven detection
process. Using both models would achieve a better perfor-
mance and generalization on various aerial image data sets.
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gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):971–987, 2002. 3

[17] N. Oza and S. Russell. Online bagging and boosting. In
Proceedings Artificial Intelligence and Statistics, pages 105–
112, 2001. 3

[18] J.-H. Park and Y.-K. Choi. An on-line PID control scheme
for unknown nonlinear dynamic systems using evolution
strategy. In International Conference on Evolutionary Com-
putation, pages 759–763, 1996. 1

[19] P. Roth, H. Grabner, D. Skocaj, H. Bischof, and
A. Leonardis. Conservative visual learning for object de-
tection with minimal hand labeling effort. In W. Kropatsch,
R. Sablatning, and A. Hanburry, editors, Pattern Recognition
27th DAGM Symposium, volume LNCS 3663, pages 293–
300. Spinger, 2005. 2

[20] R. Ruskone, L. Guigues, S. Airault, and O. Jamet. Vehi-
cle detection on aerial images: A structural approach. In
International Conference on Pattern Recognition, volume 3,
pages 900–904, 1996. 1

[21] R. Schapire. The boosting approach to machine learning:
An overview. In Proceedings MSRI Workshop on Nonlinear
Estimation and Classification, 2001. 1

[22] K. Tieu and P. Viola. Boosting image retrieval. In Proceed-
ings IEEE Conference Computer Vision and Pattern Recog-
nition, pages 228–235, 2000. 3

[23] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings IEEE Conference
Computer Vision and Pattern Recognition, volume I, pages
511–518, 2001. 1, 2, 3

[24] B. Wu, H. Ai, C. Huang, and S. Lao. Fast rotation invariant
multi-view face detection based on real adaboost. In Pro-
ceedings International Conference on Automatic Face and
Gesture Recognition, pages 79–84, 2004. 4

[25] L. Zebedin, A. Klaus, B. Gruber-Geymayer, and K. Karner.
Towards 3d map generation from digital aerial images. In-
ternational Journal of Photogrammetry and Remote Sensing,
60:413–427, Sept. 2006. 2

[26] T. Zhao and R. Nevatia. Car detection in low resolution aer-
ial image. In International Conference on Computer Vision,
2001. 1


