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Abstract

We investigate human interest in photos. Based on our
own and others’ psychological experiments, we identify var-
ious cues for “interestingness”, namely aesthetics, unusu-
alness and general preferences. For the ranking of retrieved
images, interestingness is more appropriate than cues pro-
posed earlier. Interestingness is, for example, correlated
with what people believe they will remember. This is op-
posed to actual memorability, which is uncorrelated to both
of them. We introduce a set of features computationally
capturing the three main aspects of visual interestingness
that we propose and build an interestingness predictor from
them. Its performance is shown on three datasets with vary-
ing context, reflecting diverse levels of prior knowledge of
the viewers.

1. Introduction
With content-based image retrieval on the rise, there is a

parallel increase in the study of cues that could help in rank-
ing the retrieved images. These include image quality [15],
memorability [14] and aesthetics [10, 11]. Yet, a measure
that would seem more relevant to automatically quantify is
how interesting people find an image and this “interesting-
ness” has hardly been studied so far. Apart from retrieval,
other applications like video summarization or automated
camera hand-over are also bound to benefit.

The most related work might be that by Dhar et al. [11],
who used their high-level aesthetics features to train a clas-
sifier on Flickr’s interestingness. It can predict the interest-
ingness of these images well, but it is questionable that these
results can be generalized to other image datasets. Flickr’s
interestingness [7] is based on social behavior, i.e. accord-
ing to the uploader’s reputation and a non-disclosed ratio
between views, favorites and comments on the images. This
measure has not been shown to relate to what people find
interesting in images. For example, images where interest
is caused through negative emotions (disgust, disturbance,
threat, etc.) tend to get low Flickr interestingness. Users

corr= +0.59 ↑ aesth ↓ int ↓ aesth ↑ int

corr= −0.17 ↑ mem ↓ int ↓ mem ↑ int

Figure 1: Interestingness compared to aesthetics and memorability.

will hardly select such images as a favorite.
In our own series of psychological experiments we ana-

lyze “interestingness” and how it relates to measures such
as aesthetics and memorability (Fig. 1). There exists indeed
a strong correlation between aesthetics and interestingness
(Fig. 1, top row). However, what is interesting does not nec-
essarily need to be aesthetically pleasing, e.g. the image of
skulls is interesting, even though it is not aesthetic. While
one would also expect a high correlation of memorability
and interestingness, our experiments indicate the contrary
(Fig. 1, bottom row). More details are to follow.

In this paper we (i) investigate what arouses human in-
terest (Sec. 2) and show that it is fundamentally differ-
ent from other properties such as memorability; (ii) pro-
pose a set of features able to computationally capture the
most important aspects of interestingness (Sec. 3); (iii)
show the performance of these features and an interesting-
ness predictor built from them, on three datasets with vary-
ing levels of context (Sec. 4); (iv) show that the con-
text within which an image is viewed is crucial for the ap-
praisal of interestingness.



2. What causes human interest?
In his seminal work Berlyne [2] introduced four vari-

ables affecting interest: novelty, uncertainty, conflict and
complexity. He showed that new, complex and unexpected
events are a strong trigger of interest. Recent psychologi-
cal research extends Berlyne’s theory, e.g. Silvia [20] who
analyzes the effects of complexity and understandability on
interest. The more computational approach in [19] concurs
with these ideas. Biederman and Vessel [3] explain interest
with perceptual pleasure, resulting from comprehensible in-
formation and newly activated synapses. They furthermore
found that natural scenes with wide landscapes are preferred
over man-made scenes. Other cognitive work by Chen et
al. [9] identifies novelty, challenge, instant enjoyment, and
demand for attention as sources of interestingness. While
Smith and Ellsworth [21] found that high pleasantness is a
major aspect of interestingness, recent studies [24] indicate
otherwise for images with polygons and paintings.

Given the lack of clear-cut and quantifiable psycholog-
ical findings, we investigate the correlation of interesting-
ness with an extensive list of image attributes, including
emotional, aesthetic and content related aspects. We use
the dataset of Isola et al. [14], extended in [13] to explore
memorability. In Fig. 2a we relate the provided image at-
tributes to the interestingness ground truth we collected (c.f .
Sec. 4.3). This figure shows the Spearman rank correla-
tion of all attributes and highlights several with high cor-
relations (either positive or negative). Fig. 2b shows the
correlations of four example attributes in more detail. In
keeping with the work in psychology we find three main
groups with high influence: novelty/unusualness (attributes:
unusual, is strange, mysterious), aesthetics (attributes: is
aesthetic, pleasant, expert photography) and general prefer-
ences for certain scene types (attributes: outdoor-natural vs.
indoor and enclosed spaces).

As the predictability of related concepts (e.g. aesthetics)
has been approached successfully in the past, there is good
hope that we can computationally predict interestingness,
based on the above cues. This assumption is supported by
our experiments. When comparing the data of [13] with
our own we find that people agree, to a large extent, on
which images are interesting, despite personal preferences
(c.f . Sec. 4.3). This observation of a high inter-individual
agreement for real-world images was also shown by [26].

The cues that we implemented were selected on the basis
of their experimentally verified correlation with interesting-
ness. That is important, as intuition can often be misleading.
For instance, Isola et al. [13] have shown that human pre-
diction of what is memorable (i.e. assumed memorability)
is negatively correlated with actual memorability. Interest-
ingness, on the other hand, has its highest correlation with
this assumed memorability. What a human observer finds
interesting is what he wants to remember and believes he
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(a) Interestingness correlated with an extensive set of image at-
tributes, based on the data of [13]. We compare the attributes to
our interestingness score, collected as described in Sec. 4.3.

(b) Correlations of noteworthy attributes from above and interestingness.
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(c) Correlation of scene categories and interest on the dataset
of [18], interestingness scores obtained as described in Sec. 4.2.

Figure 2: What aspects relate to interestingness?

will. Unfortunately the latter is often not the case.
Additionally, we investigated the preference for certain

scene types (Fig. 2c) and found, in agreement with [3], that
people prefer natural outdoor scenes rather than man-made
scenes. While interestingness is higher for images contain-
ing sky, actual memorability decreases if sky is present.
Indeed, when comparing actual memorability and interest-
ingness, we find them to be negatively correlated1. Never-
theless, we believe that also for applications like selecting
images for advertisements (mentioned by Isola et al. [13]),
it makes more sense to select an interesting image, than
a memorable but dull one. In the end, the goal is not to
have people remember the image, but the message com-
bined with a positive connotation.

1The complete experimental data is available on the authors’ webpage



3. Computational approach for interestingness
prediction

In this section we propose features that computationally
capture the aspects/cues of interestingness which we found
most important (c.f . Fig. 2) and are implementable: unusu-
alness, aesthetics and general preferences. Then, we use
these to predict the interestingness of images. Thereby we
build upon the set of features we used in our previous work
for image sequences [12] and extend it with additional fea-
tures suitable for single images.

Formally, given an image I we are looking for an inter-
estingness score s. Our pipeline to achieve this task con-
sists of two stages: (i) exploring various features to capture
each of the above cues for interestingness and (ii) combin-
ing these individual features.

3.1. Unusualness
As said, unusualness/novelty is an important cue for in-

terestingness. Abnormality detection goes in that direction,
but most contributions consider constraint surveillance set-
tings with fixed cameras. Instead, we want to capture un-
usualness in single images from arbitrary scenes. We pro-
pose two different methods, one relying on global image
descriptors and one on image parts.

Global outliers. We detect global outliers in the dataset
by applying the Local Outlier Factor (LOF) algorithm [6]
to global image descriptors. LOF gives a measure to what
degree a data point (an image, in our case) is outlying, tak-
ing into account its k nearest neighbors. It is called local,
as the outlier factor is calculated with respect to the den-
sity of its closest cluster. In all our experiments we use a
10-distance neighborhood and as features (i) the raw RGB
pixel values sunusualpixel , (ii) GIST [18] sunusualgist and (iii) Spa-
tial Pyramids on SIFT histograms [16] sunusualpyr . We use
these features, as they have been found effective for scene
categorization [18, 16] and image classification [16].

A similar idea was used by Datta and Wand [10], where
they propose a Familiarity feature. This measure is com-
puted as the average distance of a test image to the k closest
training images (based on local features). The higher this
distance the less familiar (more unusual) an image. Inter-
estingly they found this feature to play a crucial role in the
classification of image aesthetics (c.f . Fig. 1, correlation of
interestingness and aesthetics ρ = 0.59).

Composition of parts. We also propose an approach
that operates on image parts. It is inspired by the work of
Boiman and Irani for the detection irregularities in images
and videos [4]. Ensembles of patches from the tested image
are matched against patches from the database, which de-
fines what is “regular”. If there is a good match, it is consid-
ered regular, otherwise as irregular. Instead of using square
patches, overlapping between foreground and background,

we over-segment the image using superpixels (SLIC [1]).
This allows for a delineation of the image parts. We model
the image as a graph with superpixels as nodes. The graph’s
energy determines how unusual the configuration of patches
is:

E(L) =
∑
i∈S

Di(li) + λ
∑
{i,j}∈N

V (li, lj) (1)

where S is the set of superpixels and N the set of super-
pixel neighbors. Di(li) denotes the unary cost of assign-
ing label l to the superpixel i. The label space L is the
set of images in the database (i.e. |L| is equal to the num-
ber of database images). The unary cost Di(li) is the Eu-
clidean distance in the descriptor space of a superpixel i
to the nearest-neighboring superpixel in the database with
label l. The set of descriptors is that of [22], which in-
cludes features such as SIFT, Texton and Color histograms
as well as location information. The binary terms V (li, lj)
denote the cost of two neighboring nodes taking labels li
and lj , respectively. They encourage label smoothness, as
V (li, lj) = 0 if li = lj and 1 otherwise, i.e. a simple Potts
penalty. Empirically we found the weighting parameter λ
to be robust and we keep it fixed at 0.02.

To find the labeling that minimizes the cost, we ap-
ply MAP inference based on a standard GraphCut algo-
rithm [5]. With L being that optimal labeling, the unusu-
alness by composition is defined as sunusualcompose := E(L)/|S|,
i.e. the energy in the Markov Random Field normalized by
the number of superpixels.

Intuitively this feature encodes how well an image can
be composed with parts of images in the database, while en-
couraging the composition of connected regions from only
one image.

3.2. Aesthetics

To capture the aesthetics of an image, we propose several
features that are rather simple in comparison to other, more
extensive works in the area. For example [11] uses content
preferences, such as the presence of people and animals or
the preference for certain scene types to classify aesthet-
ically pleasing images. We capture such general prefer-
ences with global scene descriptors in Sec. 3.3. For pre-
dicting aesthetics, we focus on capturing visually pleasing
images, without semantic interpretation.

Colorfulness. We measure colorfulness as proposed by
Datta and Wang [10], i.e. as the Earth Mover distance (in
the LUV color space) of the color histogram of an image
HI to a uniform color histogram Huni. A uniform color
histogram is the most colorful possible, thus the smaller
the distance the more colorful the image, saesthcolorful :=
−EMD(HI , Huni).

Arousal. Machadjik and Hanbury [17] extracted emo-
tion scores from raw pixels. Their features are based on the



empirical findings of [25], which characterized emotions
that are caused by color using the space of arousal, pleasure
and dominance. As interest is correlated with arousal (c.f .
Fig. 2a), we use an arousal score as in [17]. It is calculated
as the average over all pixels p of the image as saestharousal :=∑
p−0.31 brightness(p) + 0.60 saturation(p).
Complexity. To capture the complexity of an image, we

compare its size after JPEG compression against its uncom-
pressed size, i.e. saesthcomplex := bytes(compress(I))

bytes(I) . We use
JPEG as it is a lossy compression, which compresses an
image according to the human visual system [27]. If the
compression rate is high saesthcomplex is low, as there is little
visually important information in the image.

Contrast. We use the same contrast quality measure
as [15], i.e. we calculate the minimal range of the 98% mass
of a gray-scale histogram to obtain saesthcontrast.

Edge distribution. Following [15] we calculate the im-
age bounding box that contains 98% of the edges in each
dimension (i.e. along x and y). Smaller bounding boxes typ-
ically correspond to less clutter and a more uniform back-
ground. We use saesthedges := 1−wxwy , with wx and wy being
the box’s normalized width and height;

3.3. General preferences

Following the observation that certain scene types tend
to be more interesting than others (c.f . Fig. 2c and [3]), we
propose to learn such features from global image descrip-
tors. We train a Support Vector Regressor (ν-SVR [8]) on
raw RGB-pixels sprefpixel, GIST [18] sprefgist , spatial pyramids
of SIFT histograms [16] spref

pyr
, and color histograms sprefhist .

Spatial pyramids and GIST are known to capture scene cat-
egories well. RBF kernels served our purposes in all cases.
We used ν = 0.5 and optimized the parameters γ and C
through grid search on the validation set. We tested C =
{2−5, 2−3, ..., 27, 29} and γ = {2−15, 2−13, ..., 21, 23, 25}.

3.4. Combination

The scores obtained from the respective features are first
normalized with respect to their mean and variance. Sec-
ond, they are mapped into the interval [0, 1] using a sig-
moid function s̄ = exp(µs)

1+exp(µs) where the parameter µ is
estimated using least-square minimization on the valida-
tion set. To combine the individual features, we perform
greedy forward feature selection. Starting from the best sin-
gle feature, we select additional features until the combina-
tion does not improve further, as a quality measure using
Spearman’s ρ. As a model we use a simple linear combina-
tion s̄comb = wTs̄sel, where s̄sel is the vector of selected
features. The weights are trained using least-squares.

As we use a linear model that assumes uncorrelated fea-
tures, we also applied whitening to decorrelate the features
before training the model. We define s̄decorr = Σ−1/2s̄,

where Σ is calculated on the training set. This whitening
step leads to only a marginal improvement, suggesting that
the features are indeed complementary (c.f . Tab. 1).

4. Experiments
In this section we discuss the performance of the differ-

ent interestingness features. As we will see, the strength
of the contextual cues that are relevant in the tested setting
determines – in part – which types of features are most ef-
fective in capturing interestingness. First, we specify the
selection of parameters and the evaluation criteria. Then,
we run through the results for three datasets.

Parameters. For the features based on raw pixels
(sunusualpixel and sprefpixel) we used downscaled images of 32×32
pixels, which is the size we found to work best. This agrees
with [23], where it was shown sufficient to capture scene
types and important objects. For each dataset we use a
training/validation/test split. The the training set serves as
a database for all the outlier methods, i.e. their response is
high if a test image is not somehow similar to the training
data. As for the general preference features, we trained the
ν-SVR on the training set and optimized the hyperparame-
ters using grid search on the validation set. The estimation
of µ for the sigmoid function of each feature and the feature
selection and estimation of the weight vector w for the com-
binations are also performed on the validation set. Both, the
test and validation set consist of 240 randomly selected im-
ages (unless specified otherwise).

Evaluation. In order to evaluate feature performance
quantitatively, we use multiple measures. These include
standard measures such as Recall-Precision (RP), Average
Precision (AP) and Spearman’s rank correlation ρ. For the
RP evaluation we use images with significant agreement
between individuals. Images with a ground truth score
s∗ > 0.75 are taken as positive and s∗ < 0.5 as negative
examples. Images with in-between scores are excluded in
the computation of RP, as there is no clear agreement be-
tween individuals.

In addition, we use the TopN score, which quantifies
how well the computer-ranked top N images agree with
the human ranking. Suppose that s∗i is the human interest-
ingness score of image Ii, then TopN :=

∑
i∈PN

s∗i∑
i∈SN

s∗
i

, where
PN is the set of N images ranked highest by a method, and
SN the set of N images ranked highest according to human
consensus. As can be easily seen, TopN ∈ [0, 1], where
a higher value corresponds to a better performance of the
algorithm.

We use the following datasets: Firstly, a set of webcam
sequences [12]. Since the presented webcam images are
sequential evolving, there is a strong context in which a
viewer rates interestingness. Secondly, we use the 8 scene
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(b) Interestingness vs. predicted score for Sequence 1.
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(d) Recall-Precision curve (Seq. 1). We show the combination
along with the five highest weighted cues.

Figure 3: An example (Sequence 1) out of the 20 webcam sequences [12] (GT: ground truth, Est: the estimated scores from our method).

category dataset [18], which provides some weaker seman-
tic context. Last, we use the memorability dataset [14],
which contains arbitrary photographs and offers practically
no context. The overview of the results is shown in Tab. 1.

4.1. Strong context: Webcam dataset

This dataset consists of 20 different webcam streams,
with 159 images each. It is annotated with interestingness
ground truth, acquired in a psychological study [12]. The
interestingness score of an image is calculated as the frac-
tion of people who considered it interesting. There are only
a few interesting events in these streams (mean interesting-
ness score of 0.15). Interestingness is highly subjective and
there are individuals who did not consider any image inter-
esting in some sequences. An example of these sequences
is shown in Fig. 3a.

As a consequence of the low mean interestingness, we
use different thresholds for RP calculation: s∗ > 0.5 as
positive and s∗ < 0.25 as negative samples, which results
in about five interesting images per sequence, on average.
As we are interested in determining the frames with high
interest, (c.f . Fig. 3b), Top5 scores provide a good char-
acterization. We tested each sequence separately and split
the remaining sequences randomly into training and valida-
tion sets (80% for training / 20% for validation) to train the

SVRs and the combination of the features.
Following the setup of the experiment, we sequentially

added the images to the database, as they were tested. i.e.
the unusualness scores are computed with respect to the pre-
vious frames only (while [12] uses the whole sequence).

Results. The mean performance over all 20 sequences is
shown in Tab. 1. Results for a sample sequence are shown in
Fig. 3. Fig. 3a shows frames of the sample sequence, while
Fig. 3c shows the top and bottom predictions of our algo-
rithm. Fig. 3b shows the correlation of predicted interest-
ingness and ground truth score and Fig. 3d plots the Recall-
Precision curve for the combination of features along with
the five single features having the highest weights.

Outlier methods perform best in this setting. Yet, not
everything predicted as unusual is rated as interesting by
humans, e.g. for image 1, Fig. 3c, the method overestimates
interestingness, because of cloud formations. This is not
unusual at the semantic level and therefore not considered
interesting by humans. Other typical failure cases include
camera shifts (global outlier methods) and direct sunlight or
shades. Aesthetics and general preference features show a
lower performance. When comparing median scores of our
approach to [12] we achieve comparable performance (AP:
0.39 (ours) vs. 0.36 [12]; Top3: 0.66 (ours) vs. 0.72).
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(b) Interestingness vs. predicted score.
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(d) Recall-Precision curve. We show the combination along
with the five highest weighted cues.

Figure 4: The 8 scene category dataset (GT: ground truth, Est: the estimated scores from our method).

4.2. Weak context: Scene categories dataset

The 8 scene categories dataset of Oliva and Torralba [18]
consists of 2’688 images with a fixed size of 256×256 pix-
els. The images are annotated with their scene categories,
which allows us to investigate the correlation between scene
types and interestingness. The images are typical scenes
from one of the 8 categories (coast, mountain, forest, open
country, street, inside city, tall buildings and highways). Ex-
amples are shown in Fig. 4a.

We extended this dataset with an interestingness score
by setting up a simple binary task on Amazon Mechani-
cal Turk. A worker was presented with a pair of randomly
selected images from different scene types and asked to
choose the one he/she considered more interesting. 20 pairs
were grouped into one task. The interestingness score of
an image was calculated as the fraction of selections over
views. We used this approximation, as a full pairwise com-
parison (O(n2)) is infeasible for a dataset of this size. Ev-
ery image was viewed by 11.9 workers on average (min.
10), which is equal to the number of views of [13]. To
ensure high quality results, only workers with the ”Mas-
ters” level were allowed for the task.

Results. Fig. 4 and Tab. 1 show the results of our features
on this dataset. The scene categories provide a weak con-

text, given by the prior on the scene type, which allows to
capture novelty/unusualness, as outliers to what are typical
images of a certain scene category. Nonetheless, all outlier
methods perform less good on this dataset. Novelty is not
only harder to capture in this setting, it is also less clearly
defined, than in the case of webcams. The algorithm can
only capture unusualness with respect to the training im-
ages (the prior knowledge of our algorithms), not the ob-
server’s prior experience. Furthermore this dataset contains
very few unusual images. Therefore a viewer mainly rates
the images in this dataset according to aesthetics and gen-
eral preferences, which transpires from the performance of
the individual features.

General preference features yield the highest perfor-
mance, as they are able to capture scene type and illumina-
tion effects (sprefhist ), such as the color of a sunset. The fea-
tures learn the preference for certain scene types (c.f . Sec. 2,
Fig. 2c) and the aversion for road scenes.

4.3. Arbitrary photos: Memorability dataset

The memorability dataset consists of 2’222 images with
a fixed size of 256 × 256 pixels. It was introduced in [14]
by Isola et al. and further extended in [13] to investigate the
memorability of images (see examples in Fig. 5).

Isola et al. [13] included an attribute on interest in
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(d) Recall-Precision curve. We show the combination along
with the five highest weighted cues.

Figure 5: The memorability dataset (GT: ground truth, Est: the estimated scores from our method).

their study (attribute “is interesting”). In their experi-
mental setting, they asked a user to classify an image as
interesting/non-interesting. In contrast, we conducted the
same study as in Sec. 4.2 on this dataset: We performed a
binary experiment, where a user had to select the more in-
teresting image from a pair. The availability of these two
experiments allows us to analyze and compare them. De-
spite the different experimental setting, the scores obtained
show a strong correlation (ρ = 0.63), suggesting that im-
ages hold an intrinsic interestingness.

Results. Fig. 5 and Tab. 1 show the results of our features
on this dataset. The trained regressor for general prefer-
ences performs best. Not surprisingly, unusualness features
perform badly. Based on the psychological findings (c.f .
Sec. 2) unusualness/novelty probably remains equally im-
portant here. Unfortunately, we are not able to capture
it for two reasons: (i) What is unusual or novel, in this
unconstrained setting, depends on the prior knowledge of
the observers, which is unknown to the algorithm. (ii) Se-
mantics are crucial in the appraisal of what is unusual in
this dataset. Take, for example, image 3 in the top row of
Fig. 5a. This image is interesting, as it shows the end of a
glacier. To predict the interestingness of such an image cor-
rectly, we need to understand such semantics.

5. Conclusion

Interestingness is an important image property. It is
clearly subjective and depends, to a certain degree, on per-
sonal preferences and prior knowledge. Nonetheless there
exists a substantial agreement about it among observers.
This also allowed us to capture it computationally. We pro-
posed a set of features able to capture interestingness in
varying contexts. With strong context, such as for static we-
bcams, unusualness is the most important cue for interest-
ingness. In single, context-free images, general preferences
for certain scene types are more important. Fig. 6 illustrates
the importance of the different interestingness cues as con-
text gets weaker. Unusualness, while remaining important,
becomes more difficult to capture with weak contexts. To
overcome the current limitations of interestingness predic-
tion, one would need: (i) an extensive knowledge of what
is known to most people, (ii) algorithms able to capture un-
usualness at the semantic level and (iii) knowledge about
personal preferences of the observer.
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Context Cue Feature ρ AP Top5

Strong
Webcams [12]

Static camera:
20 different
outdoor sequences

U
nu

su
al compose 0.29 0.35 0.51

pixel 0.23 0.22 0.53
pyr 0.01 0.10 0.31
gist 0.03 0.12 0.28

A
es

th
et

ic
arousal 0.13 0.24 0.41

complex 0.09 0.26 0.48
colorful -0.06 0.06 0.26
edges -0.04 0.07 0.34

contrast 0.10 0.15 0.41

Pr
ef

.

pixel 0.04 0.11 0.35
pyr 0.05 0.10 0.31
gist 0.16 0.18 0.39

colorhist 0.05 0.12 0.36
combined 0.32 0.39 0.57

comb. decorr. 0.31 0.42 0.61
chance 0 0.04 0.25

Weak
Scene
categories [18]

8 scenes types:
coast, mountain,
forest, open
country, street,
inside city, tall
building,
highway

U
nu

su
al compose 0.18 0.28 0.38

pixel 0.23 0.32 0.32
pyr 0.17 0.27 0.66
gist 0.19 0.23 0.47

A
es

th
et

ic

arousal 0.43 0.45 0.65
complex 0.19 0.31 0.53
colorful 0.24 0.33 0.67
edges 0.30 0.34 0.51

contrast 0.19 0.34 0.62

Pr
ef

.

pixel 0.43 0.40 0.62
pyr 0.64 0.78 0.70
gist 0.67 0.75 0.76

colorhist 0.54 0.69 0.83
combined 0.71 0.83 0.68

comb. decorr. 0.70 0.83 0.68
chance 0 0.26 0.48

None
Memorability[14]

Arbitrary photos:
Indoor, Outdoor,
man-made,
natural,
people, animals

U
nu

su
al compose 0.10 0.35 0.46

pixel 0.01 0.31 0.65
pyr -0.11 0.29 0.60
gist -0.01 0.30 0.45

A
es

th
et

ic

arousal -0.03 0.31 0.47
complex 0.27 0.42 0.63
colorful 0.03 0.34 0.61
edges 0.11 0.42 0.55

contrast 0.05 0.33 0.67

Pr
ef

.

pixel 0.25 0.51 0.67
pyr 0.52 0.66 0.78
gist 0.58 0.69 0.77

colorhist 0.33 0.55 0.64
combined 0.60 0.73 0.82

comb. decorr. 0.60 0.77 0.80
chance 0 0.26 0.47

Table 1: The interestingness cues and their performance on the 3 datasets.
We highlight best combination and best and second best single feature.
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