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Abstract

Objects are usually embedded into context. Visual con-
text has been successfully used in object detection tasks,
however, it is often ignored in object tracking. We propose a
method to learn supporters which are, be it only temporally,
useful for determining the position of the object of inter-
est. Our approach exploits the General Hough Transform
strategy. It couples the supporters with the target and nat-
urally distinguishes between strongly and weakly coupled
motions. By this, the position of an object can be estimated
even when it is not seen directly (e.g., fully occluded or out-
side of the image region) or when it changes its appearance
quickly and significantly. Experiments show substantial im-
provements in model-free tracking as well as in the tracking
of “virtual” points, e.g., in medical applications.

1. Introduction
The fact that context helps in object detection is well-

known. For instance, it has been repeatedly reported [7, 13]
that one of the strongest predictors of vehicle presence and
location in an image is the shadow it casts on the road. Simi-
larly, many parts-whole relations have been exploited by de-
tectors, e.g., of a face vs. facial parts [4]. In detection, only
stable, long-term and statistically significant object-context
relationships are easily incorporated, e.g., [12, 3].

In tracking, many temporary, but potentially very strong
links exist between the tracked object and the rest of the
image. Consider, for instance, the image in Fig. 1a of a
skipping stone. The ripples on the surface not only strongly
constrain the location of the object of interest – the stone
– but also allow for a fairly good prediction of its future
trajectory.

To exploit context for tracking, we propose to incremen-
tally learn a model inspired by the Implicit Shape Model
(ISM) [8], where local image features vote for the object

(a) What happens with the stone? (b) Where is the soccer ball?

Figure 1. Supporters come with different forms, durations of exis-
tence and predictive strengths. For example, the trajectory of the
stone can be reconstructed from a single image (a).

positions. The core idea is depicted in Fig. 2. First, local
image features from the whole image are extracted (yel-
low points). Given the position of the object of interest
in the frame, these image features are usually divided into
object points and points belonging to the background (see
Fig. 2b) [9]. Object points lie on the object surface and
thus always have a strong correlation to the object motion
(green points). Background points, e.g., points on other in-
dependently moving objects or in the static background, are
considered to carry no information about the object position
(blue points). Instead of this typical, binary distinction, we
propose the concept of Supporters.

Supporters are features which are useful to predicting the
target object positions. They at least temporarily move in a
way which is statistically related to the motion of the target
(red points). A supporter can be very strong (comparable
to an object feature), e.g., a wristwatch on a hand holding
the target; or quite weak when the coupling with the target
motion is not that outspoken. The goal of our algorithm is,
in other words, to find such local image features which help
to predict the position of the target. A simple but highly ef-
fective method based on the Generalized Hough Transform



(a) (b) (c)

Figure 2. (a) A frame with the target object marked. (b) Supporters are features that vote for the position of the object, since their motion
appears correlated. They can belong to the object itself (green) or not (red). Uncorrelated features (blue) are discarded. (c) Even if the
object cannot be tracked based on its appearance (e.g., it gets occluded or changed its appearance), the supporters can help infer its position.

(GHT) is proposed for maintenance of the supporter set, i.e.,
for associating and disassociating features with the tracked
object.

The most closely related work is that of Cerman et
al. [2], who improve object tracking by using a single “com-
panion” region close to the target. The companion has a 2D
affine coupling to the target. Our approach is inspired by the
companion idea, but is more general in a number of impor-
tant ways. We continuously estimate, update, and refine a
model which predicts the position of the target. This model
consists of the supporters, which carry information about
the target position. In contrast to Cerman et al.’s compan-
ion, the motion coupling between supporters and target can
be non-rigid. Multiple supporters can be activated at the
same time. The supporters need not be confined to a re-
gion surrounding or next to the target. As a matter of fact,
also a set of spatially dispersed, local patches with different
types of motion couplings are allowed to drive the process.
Moreover, our approach can re-detect the target and is more
flexible in updating the model of its appearance. It can also
deal with moving cameras, as it does not depend on a static
background assumption as was the case in Cerman et al.

The remainder of the paper is organized as follows. In
Sec. 2 we propose our supporter approach. Implementation
details are presented in Sec 3. Sec. 4 discusses experimental
results, including a medical application. Sec. 5 concludes
the paper.

2. Learning the Motion Couplings

It takes very little for people to correctly infer the sub-
sequent positions of moving objects. For example, let us
consider Fig. 3. When trying to track a specific balloon, it
is absolutely not necessary for it to be in view to still have
a rather precise idea of where it is. Its relation to other ob-
jects, moving with it, suffices. In the example, as long as
even only the basket below the balloon is visible, one still
can make a good prediction. This coupled motion would
also help to track the balloon even if its appearance changed

rapidly. This type of inference from motion context is what
we aim for in this paper.

Our approach combines the principles of (i) including
context for tracking; (ii) establishing an object model on-
the-fly; and (iii) exploiting the flexibility of local image fea-
tures for object detection and tracking.

2.1. Problem Formulation

We want to learn a model of P (x|I), predicting the posi-
tion x of an object1 in the image I . The objective is to learn
this model from a few, reliable measurements, i.e. from im-
ages where we feel confident about the target object posi-
tions. The model should then generalize enough to drive
the tracker, also for images where the target position is less
obvious. The supporter context will be part of the model, so
that the object need not even be visible.

Implicit Shape Model for Object Detection. Local im-
age features have been shown to be a powerful tool for spe-
cific object detection (e.g., [10]). Furthermore, the General-
ized Hough Transform (GHT) has been successfully com-
bined with local features for object class detection. An ex-
ample is [8], where an off-line stage learns a codebook of
local features. Next, the Implicit Shape Model (ISM) of an
object class is learned. After training from a large database
of labeled images, the model can be used to detect objects
from that object class in test images. First, features are ex-
tracted, which are matched to the codebook. Each feature
subsequently casts probabilistic votes for possible object
positions, where the hypothesis score is obtained as a sum
over all votes. The score function S of the ISM is defined
as a probability density over the object position x = (x, y)
in the image I , i.e.

P (x|I) ∝ S =
∑
f∈F

P (x|f)P (f|I), (1)

where F is a set of features. The indicator functions P (f|I)
specifies if feature f is found in the image I , which then

1We currently only consider one target.



(a) input sequence (b) learning algorithm (c) output sequence
Figure 3. (a) Given an input sequence with some labeled data like the position a specific target balloon (yellow cross), (b) a model is learned
in order to predict the object positions. (c) The model has to generalize such that the positions (red crosses) can be correctly predicted also
in the other images, even when not visible (estimated positions are represented by an underlying probability distribution).

votes for the object position x by P (x|f). By analyzing this
voting space, i.e. by finding its peaks, objects can be de-
tected.

2.2. Learning the Supporter Model

Given the strengths of ISM and the fact that local features
have been successfully used for object tracking as well (e.g.
[9]), it stands to reason to combine these ideas. We will use
local features, as in ISM, to predict the target object posi-
tion. In contrast to regular ISM, we continuously update the
pool of contributing features as well as their coupling to the
target position.

Suppose we have a feature point x(i) = (x(i), y(i)) as-
sociated with a feature f(i) and the position x? = (x?, y?)
of the target. We want to find such features that can act as
strong predictors for x?. In general, the trajectory of such
features must be coupled with the target by some motion
model (see Fig. 4a-b). One might consider arbitrary com-
plex motion models here but given the nature of the ISM, it
is assumed that the relative position of feature and target is
more or less fixed over short time intervals (see Fig. 4c).

Learning the model can now be made quite simple. For
frames with good visibility of the target or with human lo-
calization in case of an interactive application, we estimate
the indicator functions of the ISM model (Eq. (1)) for each
detected feature f in the image. This includes estimating the
relative position x̄ = x? − x(i) of the target with respect to
the feature position x(i). This should be done in an on-line
manner, since it might change over time. Hence we use the
exponential forgetting principle, i.e.,

Pt(f|I) ∝ α Pt−1(f|I) + (1− α) p(f|It), (2)

Pt(x̄|f) ∝ α Pt−1(x̄|f) + (1− α) p(x?
t − x(i)

t |f), (3)

where parameter α ∈ [0, 1] determines the weighting of the
past estimates. The current image It and the object position
x?

t is included using p(f|It), the indicator of feature f in the

(a) trajectories of two features (b) correlated motion

(c) GHT (d) simplification
Figure 4. (a,b) Estimating the coupling between the motions of two
points, x? and x(i) (c) using the GHT voting principle to describe
the coupling, and (d) an approximation to the GHT distribution
with a single Gaussian.

current image; and p(x?
t −x(i)

t |f), the current relative object
position.

We focus on coupled motions, and discard situations
where the supporter and target stand still. Hence, we only
update the indicator functions when the object position x?

or the corresponding local image feature position x(i) has
changed, i.e.,

||x(i)
t − x(i)

t−1||2 > θmov ∨ ||x?
t − x?

t−1||2 > θmov, (4)



where θmov corresponds to a small threshold.

Evaluation. The model built as described above is then
used to determine the position of the object using Eq. (2)
and Eq. (3) in Eq. (1) when the object can not be tracked
directly, i.e.,

P (x|It) ∝ St =
∑
f∈F

Pt(x|f) Pt(f|It). (5)

where x = x̄ + x(i) stands for the position in the image.

3. Practical Implementation

In the following we describe implementation aspects of
our proposed approach. Our design decisions (approxima-
tions) were mainly motivated to speed up the tracking pro-
cess while achieving good results. The overall algorithm is
sketched in Alg. 1.

Image features. Although any image features could
be used, our implementation uses Harris points [5] and de-
scribe them by a SIFT inspired descriptor [10]. In fact, we
concatenate 8 bin orientation histograms, calculated on a
3 × 3 grid on an extracted 30 × 30 image patch around the
found Harris point. Additionally, we estimate the main ori-
entation ϕ0 using the maximum orientation of a 16 bin ori-
entation histogram calculated on the image patch.

Voting. Using the GHT as description is powerful, since
it makes a natural distinction between strongly and weakly
coupled motions, based on how peaked these are. However,
given the limited data available, we approximate the voting.
In fact, we approximated the voting of a feature f with a
single Gaussian (see Fig. 4d), i.e.,

P (x|f) ∝ 1√
2π|Σ|

exp
(
−0.5 (x− µ)T Σ−1 (x− µ)

)
(6)

Where µ is the mean, stored using polar coordinates (rel-
ative angle ϕ, with respect to the main orientation ϕ0, and
distance r)2 and Σ is the covariance matrix.

Model. We store all detected feature points in a database
DB. The entries (d, r, ϕ,Σ) store the descriptor and the es-
timated voting vector, encoded by radius, angle and covari-
ance matrix, respectively.

Feature matching. To estimate P (f|I), the feature f
is matched with the database DB of already stored local
features. If the best match is below a manually set threshold
θmatch, it is considered to be a matching point, i.e.,

max
d∈DB

(fT · d) > θmatch (7)

2Note, in our implementation the scale is fixed. However, this can be
included in a straight forward manner.

Algorithm 1: Determination of Position

1 - init model, DB = {}
2 while run do
3 - detect and track local image features
4 - find best matches with current model (Eq. (7))
5 if x? available then
6 LEARNING THE MODEL

7 if object has moved (Eq. (4)) then
8 foreach matched feature (Eq. (7)) do
9 - update voting vector, i.e. ϕ and r

(Eq. (8) and Eq. (9))
10 - update Σ (Eq. (11))
11 end
12 foreach non matched feature do
13 - add key-point to DB
14 - init voting vector, i.e. ϕ and r

(Eq. (10))
15 - init Σ = σ0 I2

16 end
17 end
18 else
19 APPLYING THE MODEL

20 - get P (x|I) using all matches (Eq. (5))
21 if P (x|I) is very confident then
22 - build second level supporters (see text)
23 end
24 end
25 end

where we use the dot-product of the normalized feature de-
scriptors (similar to [10]). If no match could be established,
the point is added to the database and becomes a supporter.

Tracking. In addition to detecting local image fea-
tures in each frame, we also use simple KLT tracking [1]
for establishing feature matches from two successive image
frames.

Updates. In the following, we present our simplified
learning model, i.e., Eq. (5). For a matched moving feature
(see Eq. (4)) we adjust the voting vector, i.e., the radius r
and the relative angle ϕ (described above), using

r
(i)
t = α r

(i)
t−1 + (1− α) r(i), (8)

ϕ
(i)
t = α ϕ

(i)
t−1 + (1− α) (ϕ(i) − ϕ(i)

0 ), (9)

with the current observations

r(i) = ||x(i)
t − x?

t ||2, and ϕ(i) = ∠(x(i)
t , x?

t ). (10)

Further, for determining the quality of the feature we update
the covariance matrix

Σ(i)
t = α Σ(i)

t−1 + (1− α) Σ(i), (11)



(a) detection/tracking results from [11]3 are used as input for our algorithm

(b) voting space

(c) supporters

(d) matched image patches
Figure 5. ETH-Cup sequence: (a) By using a state-of-the-art approach combining detection and tracking, the object positions can be
successfully tracked and also re-detected once it gets lost. (b) Our approach estimates a score (encoded in the brightness), which is
related to the probability distribution of the object center position, exploiting both object appearance as well as its motion context. (c) The
supporters are learned directly (position provided by the tracker; green points; blue lines) and 2nd level supporters (learned by the estimated
position of the 1st level supporters; red points; cyan lines). The predicted position is the significant maximum in the voting space, which is
indicated by the yellow circle. (d) Image patches corresponding to matched supporters are shown in more detail. The same color identifies
the use of the same supporter feature. Please note that a pure interpolation between the tracked points from (a) would not work here.

with the current estimate

Σ(i) = (x?
t − µ(i)) (x?

t − µ(i))T. (12)

For strong correlated features the variance thus decreases
and the voting gets more peaky.

“Reliable information”. The reliable information,
when available, is the input for our learning. In this work we
mainly explore two cues, (i) a human supervisor (no errors)
and (ii) a very conservative object detector/tracker (i.e., very
high precision but potentially low recall). Although our ap-
proach is able to cope with some (uncorrelated) errors, ex-
periments showed that having few but accurate information
sources leads to better results.

Second level supporter. As described above, we refrain
from updating the model for supporters when the object is

directly and reliably observed – the “first level supporters“
discussed so far. In order to still benefit from surrounding
image features even when no reliable information is present,
we introduce so called “second level supporters”. If the vot-
ing is very confident, i.e. the maximum of the voting space
is above a user defined threshold, we use it for training ad-
ditional supporters. Since self-prediction is used, we en-
code the uncertainty by multiplying the covariance matri-
ces by a factor of two. Furthermore, in order to avoid drift-
ing as a result from the self-learning, we avoid a feedback
loop and use these second level supporters only to calculate
P (x|I), i.e. for the determination of the target location, to-
gether with the first level supporters. They are, however, not
used to assess the confidence of the voting and thus do not
help initiate the creation of further supporters. This remains
the sole privilege of the first level supporters.



4. Experimental Results

In the following we demonstrate the benefits of the pre-
sented approach. First, we give a detailed analysis focusing
on improving model-free tracking. Second, we use only
information from the first frame in order to incrementally
include supporters into the model. Finally, a practical ap-
plication from medical imaging is shown.

4.1. Improving Model-Free Tracking

Recently published approaches for model-free tracking
combine tracking and detection in a unified framework
(e.g., [11]). They are, to some extent, able to cope with ap-
pearance changes of the object (e.g., out of plane rotations)
and partial occlusions. Nevertheless, at least some parts of
the object have to be visible.

We applied the detection/tracking approach of Stalder et
al. [11], where the object is manually initialized in the first
frame. In the ETH-Cup sequence (see Fig. 5a) a small bot-
tle is moved by hand behind a cup (which fully occludes
it), lifted up and finally gets visible again. The tracker pro-
vides high precision, i.e. hardly any incorrect positions are
reported. However, the object is lost once it gets (partially)
occluded. The result (output) of the tracker is passed as in-
put to the proposed approach. The resulting voting space is
depicted in Fig. 5b, which this time clearly shows a strong
peak even when the object is fully occluded.

Learned Supporters. Fig. 5c shows the learned sup-
porters which predict the estimated position of the object
through the voting space. The line points to the mean and
the width encodes the confidence (proportional to |Σ|−1)
and is only plotted for significant features. Second level
supporters (cyan) further stabilize the prediction as the
number of first level supporters (blue) might decrease over
time (second to fourth image).

Additionally, Fig. 5d shows examples of active support-
ers at the corresponding time instances. As can be seen, the
system manages to efficiently exchange such supporters for
others that are better suited at any time. At the beginning,
supporters lie mostly on the object. Once the object gets
occluded, the position is determined by the on-line learned
context (watch). As soon as the object re-appears, so do
features lying on it in the supporter set.

Comparison. For comparison we generated a gold stan-
dard of where the object is in the scene. Ten humans were
asked to mark the most probable center position of the ob-
ject in every frame. We consider the reported position as
correct (true positive), if it is within 15 pixels of the average
human estimate (average plus or minus 2 times the standard
deviation). As can be seen from Fig. 6 and Tab. 1, our ap-

3www.vision.ee.ethz.ch/boostingTrackers, 2009/09/23
(standard parameter)

Figure 6. Tracking the object was improved substantially over the
original tracker [11] (red), especially when the object is partly or
fully occluded. Our algorithm (blue) shows qualitatively the same
behavior as human annotators (black; mean ± standard deviation
from 10 humans).

Method Recall Precision
tracker/detector [11] 45% 100%
+ proposed approach 89% 97%

Table 1. Improving model-free tracking for ETH-Cup.

proach essentially increases the recall (true positive divided
by the length of the sequence), while just loosing slightly in
precision (true positives divided by the sum when tracking
results are reported). This is due to the fact that we are able
to predict the position even when the object is not visible.

4.2. One-Shot-Learning

As a special case, let us assume that reliable information
is only provided at the first frame. In particular, we manu-
ally delineate the target object in that frame and only trust
that information, no further detections later on. All interest
points on the object are taken as the only supporters. The in-
dicator distribution for each supporter is a Gaussian, with as
its mean the relative position to the target object in the first
frame, and with a preliminary covariance matrix Σ = σ2I2

(where I2 stands for a 2 × 2 identity matrix and where we
used σ2 = 10). In order to improve robustness, supporters
that also match one of the background features are removed
from the model. Since after the first frame no further reli-
able information is available, only second level supporters
are learned.

Fig. 7 shows two example sequences captured with a
hand held camera. In the first sequence an image on a piece
of paper is tracked. After the static initialization of the first
level supporters from the first image, the second level sup-
porters are continuously learned and adapted. They allow



Figure 7. Voting space (first and third row) and corresponding supporters (second and fourth row) for two sequences where the target object
is only marked in the first frame only. The target object (a picture on the paper and a video) are tracked successfully.

to correctly predict the correct target position even when
the picture is completely occluded as in the middle im-
age. They are, furthermore, continuously adapted when the
scene changes. In the second sequence a window showing
the trailer from the movie “Up” is tracked. Although the ob-
ject itself changes rapidly it can be robustly tracked thanks
to the learned second level supporters. Hence, tracking is
almost totally based on motion context here.

4.3. Medical Application

Object tracking is also a topic of major interest in the
medical field. In fact, the medical community developed
a largely independent ecosystem of methods (the registra-
tion methods [6]) that, similarly to optical flow, try to find a
dense deformation field between two images often captured
by different imaging modalities. Occlusion plays only a mi-
nor role in the medical field, but the objects can move com-
pletely out of the imaging plane and thus become invisible.

An example is tracking of the cardiac valves in two-
dimensional Magnetic Resonance (MR) sequences. For re-
liable diagnosis, the medical doctors need two-dimensional
image sequences with the cardiac valves always in the imag-
ing plane. As the optimal imaging planes for the two valves

are initially unknown, an image sequence perpendicular to
the valve plane is acquired, see Fig. 8. The cardiac valves
are then labeled in this sequence to find the optimal imag-
ing plane for the subsequent scan. This scan then shows the
cardiac valves always in the imaging plane.

Common tracking approaches do not work for these im-
ages as the valves perpetually change their shape and some-
times are not even visible within the imaging plane. In this
scenario a first sequence of 40 images, over an entire cardiac
cycle, is captured. The medical doctor defines, in the first
frame, four points that mark the two planes through both
valves, see Fig. 8a. This accurate human input data is then
used to train the model. In contrast to the previously de-
scribed one-shot-learning, no object boundary but only four
target points are labeled and therefore all feature points are
considered as supporters. As quasi-static background fea-
tures such as the MR table or thoracic wall would negatively
influence the tracking accuracy we try to suppress them. As
they are far away from the target points, their influence is
limited using the squared Euclidean distance in the calcula-
tion of the covariance matrix for each feature i in the first
frame, thus Σ(i) ∝ ||x? − x(i)||2 · I2. The model learned
from the first image is then applied to the remaining images



(a) (b) (c) (d) (e) (f)
Figure 8. (a) Manually labeled valve positions, (b-f) the found valve positions in 5 cardiac phases. As the confidence of the voting space
was too low, in cardiac phase 16, the valve positions were interpolated (indicated by the dotted lines) from neighboring images.

in the sequence, see Fig. 8b-f. If the maximum confidence
in the voting space falls below a fixed threshold, the target
position for all four points is interpolated from neighboring
images. One can also think of requesting the user for further
manual input to avoid interpolation.

The found valve positions that define the optimal imag-
ing plane are then feed back to the MR scanner. A new se-
quence with the cardiac valves always in the imaging plane
is acquired. Although the user could have manually labeled
all the positions of the valves in every frame, user interven-
tion should be kept at a minimum. The reason being that
prolonged labeling bears the danger that the heart slightly
drifted away from its previous position during the first scan
and thus limiting the usefulness of the second MR acquisi-
tion.

5. Conclusion

In this work we explore context in visual tracking. Sup-
porters are learned on-line in order to determine the most
probable position of the object in the scene. These sup-
porters are determined from statistical dependences, e.g.,
caused by coupled motions. They might come from tar-
get object points, shadows, other objects interacting with
the target, or any regions that provide information about
the object positions. This coupling can be permanent or
temporary and is exploited using the Generalized Hough
Transform principle. The proposed approach can easily be
combined with tracking approaches and significantly im-
proves tracking performance, especially when the object is
occluded or if it changes its appearance heavily. Addition-
ally, we showed results from a medical application that ro-
bustly tracks (virtual) points in an MR cardiac image se-
quence.

Obviously there exist situations where our assumptions
are violated. If the coupling with the supporters changes
abruptly, then our method will have no time to adapt and
relying on such supporters becomes a liability instead of an
asset. One might think of a magician as an extreme case,
who explicitly exploits that and thereby even misleads the
human visual system. This type of situations is beyond the
scope of the paper and calls for the inclusion of higher level
scene understanding and reasoning.
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videos are available on the authors’ web-page.
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