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Abstract

In this thesis, we introduce the On-line Boosting for Feature Selection algorithm.
Boosting, a widely used machine learning algorithm, has become very popular
in computer vision, showing impressive performance for detection and recogniti-
on tasks. Mainly off-line training methods have been used, which implies that all
training data has to be given a priori. To train the classifier on-line and incremen-
tally as new data becomes available has several advantages and opens new areas of
applications in computer vision. However, in many practical applications only par-
tially labeled or unlabeled data is available. Since the proposed algorithm is fully
supervised, labels have to be generated for the unlabeled samples. Thus, different
methods, from fully supervised learning to self-learning, are shown. In fact, we apply
the algorithm on such diverse tasks as learning complex background models, visual
tracking, and improving object detectors over time. All approaches benefit signifi-
cantly from the on-line training, which is shown by various experiments. Extensive
evaluations have been done, whereas results demonstrate the applicability of the
proposed algorithm for all these different applications. Nevertheless, it cannot be
ensured that always correct updates are made and hence the system may drift, i.e.,
starts learning something wrong. Finally, some suggestions of limiting or avoiding
the problem are discussed.

Keywords: computer vision, machine learning, on-line learning, boosting, feature
selection, object detection, object tracking, background modeling, drifting, supervi-
sion.
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Kurzfassung

In dieser Arbeit wird der Algorithmus Online Boosting für Merkmalsselektion vor-
gestellt. Boosting, ein viel verwendeter Algorithmus aus dem maschinellen Lernen,
hat sich auch im Bereich des maschinellen Sehens (Computer Vision) etabliert. Ein-
drucksvolle Resultate werden sowohl bei der Objektdetektion als auch bei der Ob-
jekterkennung erzielt. Hauptsächlich wurden sogenannte offline Lernmethoden ver-
wendet, die voraussetzen, dass alle Trainingsdaten bereits zu Beginn vorhanden sind.
Wird der Klassifikator jedoch online oder inkrementell trainiert, wenn neue Daten
vorhanden sind, ergeben sich viele Vorteile und neue Anwendungsmöglichkeiten. Bei
vielen praktischen Anwendungen ist jedoch die Klassenzugehörigkeit zu den Daten
nur teilweise oder gar nicht bekannt. Da der vorgestellte Algorithmus aber immer
auch die Klassenzugehörigkeit benötigt, muss diese für die fehlenden Datenpunkte
generiert werden. In dieser Arbeit werden verschiedene Methoden, von vollständig
überwachtem Lernen bis hin zum eigenständigen Lernen, untersucht. Im speziellen
wird der Algorithmus auf sehr unterschiedliche Bereiche des maschinellen Sehens an-
gewendet, wie des Lernen von komplexen Hintergrundmodellen, das Verfolgen von
Objekten (Tracking) und die kontinuierliche Verbesserung von Objektdetektoren.
Alle Verfahren profitieren signifikant vom online Lernen was anhand etlicher Ex-
perimente veranschaulicht wird. Die Eignung des vorgestellten Algorithmus für all
diese Anwendungen wird durch umfangreiche Auswertungen demonstriert. Da je-
doch nicht immer gewährleistet werden kann, dass korrekte Daten vorhanden sind,
neigt das System zu driften, d.h. etwas Falsches zu lernen. Zum Abschluss werden
einige Vorschläge für die Limitierung bzw. das Verhindern dieses Problems disku-
tiert.

Stichworte: maschinelles Sehen, maschinelles Lernen, online Lernen,
Boosting, Merkmalsselektion, Objektedetektion, Objektverfolgung, Hintergrund-
modellierung, Drift, Supervision.
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Chapter 1

Introduction

The chapter sets the frame which motivates this thesis. We ask ourself the fol-
lowing questions: Why is it worth doing research on computer vision? What are
the historical roots of computer vision? What are the long term aims? Why is ma-
chine learning highly used in the last years? What are the main issues of learning
nowadays? How is this work related to it? What did we achieve over the last years?
And thus, what are the contributions of this thesis.

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Object Recognition System . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Learning and Vision: A Historical View . . . . . . . . . . . . . . . . 6

1.2.2 Two Selected Examples . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

An image contains a lot of informations encoded in thousands of pixels. Each of
them may have highly relevant informations of what is happening in this image.
But, how can these informations be extracted? David Marr started his classical
book Vision [80] with the following question:

What does it mean, to see? – The plain man’s answer (and Aristotle’s, too)
would be, to know what is where by looking.
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(a) typical holiday picture (b) art2

Figure 1.1: What does it mean to see?

By taking a look at Figure 1.1, what does the human care about in an image and
thus what are the tasks for computer vision? Following Pietro Perona1 the following
points should be considered: Verification – Is an object present in a given sub-
image?; Classification – What object (apple, car, person,...) is it?; Detection – Are
there people?; Naming – What is where?; Identification – Is this me?; and Catego-
rization – Streets, Trees,... An other line of research focus on Scene Understanding
– What is the picture telling me? [21]

All the considerations above work on a still images. When using a video or image
sequence, motion plays an essential role and the tasks get extended using the dy-
namic behavior, e.g., Dynamic Classification – How does the object move? (e.g.,
jumping, running,...). Besides this, a new question comes up and is formulated by
the following task: Tracking – Where is the object in the next frame?

The temporal information can also be helpful in order to detect or categorize object
(e.g., focus of attention [61]). In general, high level information or context can
help to verify decisions and it can be used to reduce the search space and speed
up recognition and detection e.g., [50, 124]. However, the temporal behavior of an
object can sometimes be obtained by a single image [115], e.g., jumping of a person.
This is possible since we have a lot of experiences and know how an object should
behave in a scene (e.g., taking into account all the physical rules such as gravity
or causality). For example, 3D structure can be obtained from a single image as
well [51].

The term object is used quite often above, however, it is not defined up to now. By

1Slides are on-line available http://www.mis.informatik.tu-darmstadt.de/events/
iwoc-iccv07/, (April 29, 2008)

2From Best Pictures On The Internet 2007 Awards, http://refreshyourself.wordpress.
com/2008/03/26/best-pictures-on-the-internet-2007-awards/ (August 18, 2008)

http://www.mis.informatik.tu-darmstadt.de/events/iwoc-iccv07/
http://www.mis.informatik.tu-darmstadt.de/events/iwoc-iccv07/
http://refreshyourself.wordpress.com/2008/03/26/best-pictures-on-the-internet-2007-awards/
http://refreshyourself.wordpress.com/2008/03/26/best-pictures-on-the-internet-2007-awards/
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Figure 1.2: Inter-class and inner-class variability: The subfigures shows Jaroslaw
Kaczyński (prime minster of Poland 2006-2007) and his identical twin brother Lech
Kaczyński, (currently President of Poland) at different ages5.

taking a look into a dictionary3 one gets:

Something perceptible by one or more of the senses, especially by vision or
touch; a material thing.

Hence, in the standard understanding an object is a (rigid) body with six degrees of
freedom. The appearance can vary in a wide range4. Thus, challenges are invariance
against view point variations, scale, illumination, deformations of the object as well
as robustness to background cutter and occlusions. Furthermore, one should recog-
nize that we live in a 3D world and that there are problems with local ambiguities.

Regarding object categorization, where it is considered that 10, 000 to 30, 000 object
categories are present, one has to deal with high interclass variance and low intra-
class variance, e.g., the class of bikes and motorbikes [99]. Furthermore, there is no
dichotomy into (specific object) recognition and categorization5, but a continuum
of problems. Nowadays, algorithms address one or the other, sometimes using quite
different techniques. An example is shown in Figure 1.2, where photos of the same
twins are depicted at different ages. Both are persons, look similar but are individual
people. Unless all these issues, a further problem arises when connecting words to
objects. Sometimes one word corresponds to more than one object. Hence, if this is
the case it is necessary to also take a look at the context and semantic. An example
is shown in Figure 1.3.

However, up to now there is no closed theory of visual recognition and no common
used definition of “an object” in the vision community. Concerning the standard

3http://www.thefreedictionary.com/object, (April 30, 2008)
4The following considerations are based on an excellent tutorial entitled Recognizing and Learn-

ing Object Categories by Li Fei-Fei, Rob Fergus and Antonio Torralba given at ICCV 2005 and
CVPR 2007. Slides and further material are on-line available at http://people.csail.mit.edu/
torralba/shortCourseRLOC/, (April 28, 2008)

5The considerations here are triggered by discussions with Jǐŕı Matas after the tutorial he
organized jointly with Krystian Mikolajczyk at ICCV 2007 on Visual Recognition. Pictures from
Figure 1.2 are thankfully provided by them.

http://www.thefreedictionary.com/object
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
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Figure 1.3: “Six pack” (Images from Google Image Search).

understanding from the dictionary, are clouds in the sky objects? To overcome this,
the following attempt is given by Jǐŕı Matas5:

View Visual Recognition as the process of associating parts of images with
parts of (other) images. The association may occur at very different levels of
abstraction, like the two image parts are shifted versions of each other ( e.g.,
stereo), the observation in two image parts are consistent with 3D rigid body
motion, responses of some filters have similar statistics ( e.g., in texture recog-
nition), or the configuration of some general characteristics is similar ( e.g.,
in categorization). They can be established through supervision (same label) or
for example on basis of some non-visual experience ( e.g., touch, taste). An ob-
ject is any representation derived from associated image parts, i.e., an “object”
may be a scene, an image, a rigid object, a class, a behavior etc.

There might be no good theory of visual recognition, but at least the goals should
be clear. The approaches should take the following points into account:

Generality: Recognize a “broad range” of objects, i.e., be general in the space of
possible objects. This is maybe the critical weakness of current recognition
methods.

Robustness: The recognition should be robust to occlusion of the object and
should allow to recognize the object under different lightning conditions, in
cluttered background scenes and from different views.

Efficiency: The response time should be insensitive to the number of objects to be
recognized, i.e., scales sub-linear with respect to the number of objects [125]
and categories.

Constructive: The method should be able of learning new objects via observation
(possibly active or unsupervised) and include it them the current models.
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1.2 Object Recognition System

There are many requirements as listed above. However, it is unclear how to model
the objects and categories. It seems that we are trying to solve problems, that do
not have a solution (vision is an ill-posed problem). Or the other way around, we
are nowadays not able to formulate the task in a popper way to solve it. Thus, we
learn, what distinguishes them rather than manually specify the difference. This is
done using data, statistics, and machine learning algorithms. Alyosha Efros6 called
this playful:

Google Intelligence – The Artificial Intelligence for the Post-modern World.

In other words, what happened before is likely to happen again. In general, a
recognition system involves the following three main points.

Representation: An object can be represented in many different ways. It can be
done global, local, part-based or hierarchical. Which again can be described
using only their appearance or both, location and appearance. To model loca-
tion, this can be done explicitly via probability density functions or implicitly,
i.e., by using a voting space [65].

As basis edges, patches, filter responses or interest points are proposed as
features. Descriptors for these features should be invariant against some of
the above mentioned issues but at the same time powerful enough to allow
of distinguishing the individual parts7. This is realized by appearance based
representation (e.g., SIFT [79]), subspace methods [128] or classifier [130].

Learning: Given a set of training data, the task of learning is to form a model,
which is able to classify these data (e.g., in object vs. background or in
individual categories). Many different learning methods were proposed, e.g.,
Principle Component Analysis (PCA) [128], Boosting [130], Support Vector
Machines [88], Bayesian Networks [117], or Neural Networks [109].

When using learning, the knowledge is encoded by the given training samples.
Thus, we have to add a further requirement (goal) for any object recognition
system to the listed points mentioned in the last section.

Training data: Minimize the number of training images needed to build a
model. Concerning robustness, if possible this can be achieved via geo-
metric and photometric invariance. However, it seems impossible to learn
all possible backgrounds and occlusions. Hence, this should be done by

6Invited Talk at the 3D Representation for Recognition Workshop held in conjunction with
ICCV 2007.

7Consider the letters W and M, if the representation is rotation invariant we are not able do
distinguish between them anymore.
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the representation. Concerning model construction, it should be possible
to learn new objects only from few examples (one-shot learning [22]) and
in an incremental manner [70].

Note, everything which is not handled by the (invariant) representation has to
be learned. However, the representation has to be powerful enough to allow
the learning algorithm to solve the task. The issues, which have to be con-
sidered in this step are: the level of supervision (fully labeled, weakly labeled,
unlabeled), label errors (wrong labels), label jitter (not well aligned objects),
learning methods (discriminative vs. generative), one/multiple class prob-
lems, including prior knowledge and context, incremental learning (complete
re-training is prohibitive), active learning, learning from few (one) examples,
etc.

Recognition: Once a model (a generative model or a discriminate classifier) is
trained, it can be applied on novel data. How this is done is (i) highly task
depended and (ii) depends on the learned model. For example, the task can
vary from just detecting the presents of an object up to accurate localize it.
The localization can either be by a bounding box or by a pixel level segmen-
tation. Further, global or a local object models may used, which in general
needs different techniques for invariant (e.g., rotation, scaling) and robust
(e.g., occlusions) recognition.

The increase of computational power allows more powerful machine learning tech-
niques to be used and are quite common nowadays. Besides novel methods for local
image representations, there was a significant progress in using advanced machine
learning methods. Further, if enough labeled training data exists these approaches
can obtain very high recognition performances. For example, in object categorization
(see [99] for a good overview), in the recent years, there was a significant progress on
methods for visual categorization. For example, the performance on the Caltech 101
dataset was in 2004 approximately 16%, now the best performing approaches obtain
close to 70% [27]. In most of these approaches machine learning plays an important
role. However, one should care about the human visual system [118] or even learn
from the observations and experiences from cognitive scientist, e.g., [17, 98].

1.2.1 Learning and Vision: A Historical View8

In this section, we take a brief historical look back in time and partially review the
connections between computer vision and machine learning. Early papers on image

8This section does not claim to be completive. The goal is to give the reader a rough feeling
of how the community evolves and how learning techniques are used. http://www.icg.tugraz.
at/News/historyOfCV, (May 11, 2008), [29].

http://www.icg.tugraz.at/News/historyOfCV
http://www.icg.tugraz.at/News/historyOfCV
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analysis appeared in general electrical engineering conferences. By 1960’s journals
and conferences get established [104] (see Table 1.1).

Year Event

since 1960 Digital image processing by computer
1968 Journal on Pattern Recognition, Pergamon, now Elsevier.
1969 First Textbook: Picture Processing by Computer by A. Rosenfeld.
1970 Journal on Artificial Intelligence
1972 IEEE International Conference on Pattern Recognition (ICPR),

Washington, D.C.
1977 Conference on Pattern Recognition and Image Processing (PRIP),

Troy, New York.
1978 Textbook: Vision: A Computational Investigation into the Human

Representation and Processing of Visual Information by David Marr,
posthumous published in 1982 [80].

1979 IEEE Journal of Pattern Recognition and Machine Intelligence
(PAMI). See [12] for a nice reflection.

1980 The National Conference an Artificial Intelligence (AAAI), Stanford.
1983 IEEE Conference in computer vision and Pattern Recognition

(CVPR) , Arlington, Virginia (PRIP was the precursors to it).
1987 Neural Information Processing System Conference (NIPS), Denver.
1987 IEEE International Conference of Computer Vision (ICCV), London.
1987 International Journal of Computer Vision (IJCV), Springer.
1993 10th International Conference on Machine Learning (ICML). Former

known as International Workshop on Machine Learning (ML).

Table 1.1: Historical events in vision and graphics.

At the beginning less than 100 people where submitting papers and participated
to those conferences. Nowadays, the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) and the IEEE International Conference on Computer
Vision (ICCV) together with the European Conference of Computer Vision (ECCV)
are currently the three major conferences in the field of computer vision, each with
a few hundred to more than 1000 participants. The submissions (and the number
of participants) are still increasing while keeping low acceptance rate (around 20%).
An overview of the submission statistis9 is visualized in Figure 1.4.

9The data was collected using the following links: http://iris.usc.edu/Information/ieee/
history.html, http://lear.inrialpes.fr/people/triggs/events/iccv03/conf-stats,
http://vrlab.epfl.ch/~ulicny/statistics/, http://www.adaptivebox.net/research/
bookmark/CICON_stat.html and http://tab.computer.org/pamitc/conference/history.
html, (February 20, 2008). The links also provide information of other conferences and journals
(including prominent machine learning ones), e.g., ICPR, NIPS, ICML, PAMI.

http://iris.usc.edu/Information/ieee/history.html
http://iris.usc.edu/Information/ieee/history.html
http://lear.inrialpes.fr/people/triggs/events/iccv03/conf-stats
http://vrlab.epfl.ch/~ulicny/statistics/
http://www.adaptivebox.net/research/bookmark/CICON_stat.html
http://www.adaptivebox.net/research/bookmark/CICON_stat.html
http://tab.computer.org/pamitc/conference/history.html
http://tab.computer.org/pamitc/conference/history.html
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Figure 1.4: Number of submissions to the three major computer vision conferences.

One of the godfathers of computer vision, Azriel Rosenfeld, started in the year
1969 reviewing and classifying the literature related to computer vision and image
analysis. From that on he published every year up to the year 2000 an article10. Even
the naming of the journals and titles are interesting showing how the terms changes
(see Table 1.2). Image Processing takes as input as well as output an image whereas
in Computer Vision (or Image Analysis) the output is a descriptive data [104]11.

1.2.2 Two Selected Examples

Even in the very beginning of computer vision machine learning methods where
applied. Nowadays, computer vision and machine learning are two fields, which are
very closely related to each other. This is reflected by the publications appearing in
the listed conferences and journals. Besides many excellent papers, from my point of
view, in the last decade there are two outstanding papers which have an enormous
impact for visual perception. We briefly mention them in the context of how they
represent, “learn”, and finally recognize objects on novel images.

Object Recognition: Based on the work of Schmid and Mohr [116], David Lowe
developed SIFT (Scale Invariant Feature Transform) for (specific) object recog-
nition. It is widely used by many researchers, hence the original conference
paper (ICCV 1999) [79] has about 1,030 cites and the IJCV version [78] which
appeared in 2004 has 2,070 cites12.

10Nowadays, web based databases exist, e.g., http://www.visionbib.com/bibliography/ or
http://www.informatik.uni-trier.de/~ley/db/conf/, (May 2, 2008).

11If the input is descriptive data and the output is an image this is called Computer Graphics
or Image Synthesis.

12All cites on Google scholar, (May 11, 2008).

http://www.visionbib.com/bibliography/
http://www.informatik.uni-trier.de/~ley/db/conf/
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Years Title Appears in

1969 Picture Processing by Computer:
Survey

ACM Computing Surveys

1973 Progress in Picture Processing:
1969-71

ACM Computing Surveys

1972-1981 Picture Processing: 19xx Journal of Computer Graphics
and Image processing

1982-1986 Picture Processing: 19xx Journal of Computer Vision,
Graphics and Image Processing

1987-1993 Image Analysis and Computer
Vision: 19xx

Journal of Computer Vision,
Graphics and Image Processing

1994-1999 Image Analysis and Computer
Vision: 19xx

Journal of Computer Vision and
Image Understanding

2000 Classifying the Literature Re-
lated to Computer Vision and
Image Analysis

Journal of Computer Vision and
Image Understanding

Table 1.2: Reviewing and classifying the literature related to computer vision by A.
Rosenfeld. The evolution is even reflected by the words used, beginning from Picture
Processing to Image Understanding.

Objects are described by local features. For that purpose, interest points are
extracted from the image, which are then independently described using a
fixed mapping (feature vector). The feature vector is saved and associated
to objects. Hence, the learning part is reduced to a simple nearest neighbor
matching. The power of the approach lies in the representation, i.e., the
description of the object’s keypoints and the voting schema.

Fast Object Detection: The seminal work of Paul Viola and Michael Jones [130]
published in Proceedings of CVPR in the year 2001 and had great success from
then on. This paper has about 1,700 cites and the IJCV [132] version, which
appeared 2002 has about 925 cites12, which of course reflects the enormous
impact13.

The main idea of the Viola and Jones face detector is to build a discriminative
classifier witch can distinguishes very efficiently between image patches con-
taining a faces or not. This is achieved by combining simple image features,
which were selected via AdaBoost, a prominent machine learning algorithm14.

13It seems since both of these paper were published in IJCV currently this journal has the
highest impact factor of 6.085 in our community followed by PAMI with 4.306. Thomans Journal
Citation Report, http://admin-apps.isiknowledge.com/JCR/JCR?RQ=HOME, (May 2, 2008).

14AdaBoost was proposed by Freund and Schapire [24] in 1997; the paper has about 2,650
cites12.

http://admin-apps.isiknowledge.com/JCR/JCR?RQ=HOME
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Thus highly machine learning is used in their approach. Detection is done
by applying the classifier subsequently to the whole image using a sliding
windows. This exhaustively search is only feasible, since the image features
can be calculated very efficiently and the evaluation is cascaded in order to
quickly decide to the background class. Since usually overlapping detections
are achieved, they have to be combined in a post processing step, e.g., via a
simple Non-Maxima-Suppression.

To sum up, machine learning techniques are used extensively in many computer
vision applications by researchers for more than the last 30 years. Nowadays, both
learning from few examples, and learning from a huge database with partially labeled
or unladed data are hot topics. In order to efficiently cope with these problems,
incremental and on-line learning methods plays an important role.

1.3 Problem Statement

A lot of research is focused on developing on-line learning methods. A subset of
cites why it is worth doing on-line or incremental learning are given in the following:

• There are a number of interesting situations where learning must take place
over time, in a kind of continuous fashion rather than as an one-shot experi-
ence. [28]

• In particular, incrementally learning a model, which is computationally effi-
cient for large-scale problems as well as adaptable to reflect the variable state of
a dynamic system, is an attractive research topic with numerous applications
such as adaptive background modeling and active object recognition. [72]

• Learning representations of objects and scenes is an essential part of any cog-
nitive vision system. In the real world, learning is usually a continuous, never
ending process, thus requiring incremental methods for updating previously
learnt representations. [119]

• To learn concepts over massive data streams, it is essential to design infer-
ence and learning methods that operate in real time with limited memory. . . .
Compared to batch methods, online learning methods are often simpler to im-
plement, faster, and require less memory. For such reasons, these techniques
are natural ones to consider for large-scale learning problems. [14]

As showed in the previous paragraph, there is an essential need for on-line algo-
rithms, that are able to learn continuously. For this thesis, the following task should
be considered:
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It should be investigated how computer vision applications can benefit from on-
line machine learning. In particular, a general algorithm, which is applicable
for many computer vision problems should be developed.

Due to its success for computer vision tasks, our approach is heavily inspired by
the seminal work of Viola and Jones [130] mentioned earlier. In a nutshell: The
assumption is that a small subset of simple image features is sufficient to distinguish
between two classes (e.g., face vs. background). The feature selection is done by
AdaBoost, which have been former proposed by Tieu and Viola [123]. However,
their approach work off-line, which limits the usage for many applications. For
example, tracking requires adaptive techniques for adjusting to possible variations
of the target object over time. This can only be handled with adaptive methods,
which are able to incrementally update their representations.

To overcome the limitations of off-line/batch learning authors propose a “pseudo-
on-line” batch processing mode, where collecting a set of training examples and then
run the off-line algorithm again and again. Javed et al. [55] propose to use on-line
learning in a co-training framework for object detection. In their work a classifier is
first trained off-line on a generic scenario, which is later adapted and refined on-line.
A similar quasi on-line approach is used by Avidan for the application of visual
tracking [5].

In comparison, we propose a general algorithm for on-line feature selection by di-
rectly extending the Off-line Boosting for Feature Selection algorithm introduced by
Tieu and Viola [123] to the on-line case. In order to develop the On-line Boosting
for Feature Selection algorithm we take an on-line variant of AdaBoost [92]. Note,
other on-line (ensemble) algorithms, like Winnow [75] or the Weighted Majority al-
gorithm [76] use a fixed set of weak classifiers (the experts), that are trained and
combined using weights in an on-line manner. In other words, they send identical
training sequences to each expert and hence the diversity is not enforced by the
samples itself. In comparisons, the on-line boosting algorithm overcomes these lim-
itations. This was one reason for us to investigate in on-line boosting and not any
other on-line machine learning algorithm. The second reason was the great success
of its off-line counterpart, which already have been applied to the feature selection
task by Viola et al. [123, 130].

1.3.1 Our Contribution

Our work presents a general approach, which allows to perform on-line learning
for feature selection using boosting. The proposed algorithm is a supervised two
class classification algorithm, i.e., it needs positive and negative labeled training
examples. In fact, it selects proper features in order to discriminate between these
two classes. In the following we focus on computer vision applications:
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Figure 1.5: On-line learning opens new areas of applications in computer vision. For
example, detection and tracking can be viewed as the same problem, depending on
how fast the classifier adapts to the current state.

Generality: Many computer vision problems can be formulated as binary classi-
fication problems, such as improving detectors (e.g., adaptation to a specific
scene), tracking, recognition, and background modeling (see Figure 1.5).

On-line Learning: The benefit of on-line learning is twofold. It facilitates (i)
learning from large databases, and (ii) learning when the data is not completely
available at the beginning. Hence, the classifier can change over time, i.e.,
adapt itself. On the right hand side of Figure 1.5 the adaptation speed variates
from fast (top) to slow (bottom), whereas on the left hand side the off-line
classifier cannot adapt at all.

Feature Selection: A subset of simple image features is selected in order to solve
the classification problem, which makes it applicable for computer vision ap-
plications.

Summarizing, feature selection in combination with on-line learning allows to adapt
the model by exchanging features, i.e., a subset of features is selected, which is cur-
rently useful. Hence, the classifier focuses on a “simpler” subproblem. For example,
in tracking the task is narrowed down to differentiate between the current object
appearance and the local background (see Section 8.1).

1.4 Outline

The thesis is organized in two main parts. Part I introduces the On-line Boosting for
Feature Selection algorithm. Part II demonstrate the applicability of the proposed
algorithm for different computer vision applications. More precise, the parts are
structured as follows:
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Part I: First, in Chapter 2, we briefly review the two main concepts, which are
(i) ensemble methods, in particular boosting, and (ii) feature selection. We
summarize how off-line boosting can be used to perform feature selection and
which features can efficiently be used for computer vision applications. In
Chapter 3, we develop the On-line Boosting for Feature Selection algorithm
based on an on-line version of boosting. We show extensions, which have been
made in order to make the algorithm more suitable for practical applications
and to increase the performance. Finally, we discuss our approach and show
the principle behavior by a 2D-toy experiment.

Part II: In this part the developed algorithm is applied on different computer vi-
sion tasks. However, in many practical applications only partially labeled or
unlabeled data is available. Since the proposed algorithm is fully supervised
learning algorithm, labels have to be generated for the unlabeled samples in
order to apply it. We focus mainly on the role of supervision, i.e., how new
(unlabeled) data can be incorporated into the already existing model. First, in
Chapter 5, a brief review is given. The rest of the part is structured according
to specify methods, where a chapter is used for (i) fully supervised learning,
(ii) learning using a verifier, (iii) self-learning and (iv) learning with fix update
rules. The update strategies are discussed for multiple applications like im-
proving object detectors, background modeling, and visual tracking. For each
of them we shortly summarize the method and show selected experiments as
well as discuss problems and limitations.

Finally, in Chapter 10, we give a conclusion by summarizing open questions. Fur-
thermore, ongoing work is briefly presented which gives some ideas to overcome the
limitations shown before.
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Chapter 2

Preliminaries

Our goal is to develop a novel on-line feature selection algorithm based on boost-
ing. Before we can introduce this algorithm we have to review related work and the
basic components. First, we define on-line and off-line machine learning. Second, we
take a look on feature selection methods. Third, ensemble methods and boosting are
reviewed. Finally, we demonstrate how off-line boosting is used to perform feature
selection and show how it can be applied to computer vision.
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2.1 Off-line and On-line Machine Learning

2.1.1 Definitions

Expert Systems builds a model using given rules and facts, which are provided by
a human expert and his experience. Using logical inference, the system is able to
provide answers to questions. The difficult part is to build the (complex) knowledge
basis. In contrast, Machine Learning models the behavior of input/output corre-
spondences using given samples, i.e., no expert is needed. In this thesis, we focus
on supervised machine learning, i.e., the target value is known. However, especially
in Part II of this thesis applications are considered, that have the need of unsuper-
vised learning. Nevertheless, the learning algorithm itself is supervised and labels
are generated by some sort of supervision.

In the following, basic definitions are given based on [19, 82, 129].

Sample: A sample (x, y) ∈ X × Y is a set of features x ∈ X , which is assigned a
target value y ∈ Y .

Learning Problem: The learning problem is defined on a probability density func-
tion P on the set of samples X ×Y . If Y containers a finite number of elements
the task is considered as classification problem, otherwise as regression prob-
lem.

In this thesis, we focus on the binary classification problem, i.e.,
Y = {−1,+1}. Furthermore, we consider X = IRd, where d is the
dimensionality of the input vector (e.g., x ∈ {0, . . . , 255}d is a 8 bit gray-value
image with d pixels).

Hypothesis: Learning is formally the estimation of a function f : X → Y . Par-
ticular knowledge is given by a samples set, i.e., supervised learning is to
predict the true label yi correctly via ŷ = f(xi). By extending this particular
knowledge of f encoded by the samples (x, y) ⊆ X × Y to the full space X
a hypothesis is build. A hypothesis H : X → Y now models the underlying
data generating process.

Hypothesis Class: A hypothesis class H is a set of hypotheses, which are con-
sidered by a special learning algorithm and have the same complexity, i.e.,
VC-Dimension [129]).

Learning Algorithm: A learning algorithm A is a function A : (X × Y)? → YX ,
where (X ×Y)? =

⋃∞
l=1(X ×Y)l is the set of all samples and YX is the set of

all functions X → Y . Machine learning can be considered as the search for an
optimal hypothesis within a given hypothesis class H? ∈ H, which fits best to
the given samples.
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Figure 2.1: Resources typically needed (allowed) for the learning methods.

There are many ways the categorize learning methods. The distinction are overlap-
ping and can be confusing and the used terminology is very inconsistent (e.g. [3,
28, 127]). The term batch learning is used quite consistently in the literature but
incremental is often used for on-line, constructive, adaptive, real-time or sequential
learning. Here, we follow mainly the definitions given by Warren S. Sarle1. The two
distinct concepts are on-line vs. off-line and batch vs. incremental. The terms are
defined in the following, and an illustration is given in Figure 2.1.

Batch Learning: After initializing the model, learning processes all the training
data and updates the model. This is repeated until a certain stopping criterion
(the average error, number of iterations, gradient is to small,...) is met. The
iterations are also called epochs.

Incremental Learning: After initializing the model, learning processes in each
iteration only one training example and then directly performs an update of
the model.

Off-line Learning: In off-line learning all the data is given in advance. The stored
samples can be accessed repeatedly. Therefore, batch learning is always off-
line.

On-line Learning: In on-line learning each training sample is discarded after it
has been processed and the model is updated. Furthermore, since an on-
line algorithm has to deal with limited resources, the computational effort for
processing one example and the consumed memory should stay constant. On-
line learning is always incremental, but note, incremental learning can be done
on-line or off-line.

1Web-Archive: ai-faq/neural-nets/part2, ftp://ftp.sas.com/pub/neural/FAQ2.html,
(February 20, 2008)

ftp://ftp.sas.com/pub/neural/FAQ2.html
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However, the overall goal, is to minimize an objective function. For off-line learning
this is done over summing the loss of all training instances

∑L
l=1 loss(H(xl), yl) where

loss(ŷ, y) is a given loss function. A loss function loss : IR × Y → IR+, which takes
the expected target ŷ and the true target y, whereas in on-line learning usually the
cumulative loss is minimized

∑
t loss(Ht−1(xt), yt) (this setting is broadly called the

Mistake Bound learning model [9]). Many different loss-functions are defined, e.g.,
the misclassification error (zero-one loss), the exponential loss (used in boosting),
the Hinge loss (used by support vector machines) or the squared error [26].

2.1.2 Off-line Learning

In off-line learning all training samples must be given in advance. More formally,
a fixed training set Sfix = {(x1, y1), · · · , (xL, yL)} with L labeled samples is given.
The samples are drawn from a distribution P , which is defined on the whole set of
samples S = X ×Y . A machine learning algorithm looks for a hypothesis H within
a given hypothesis class, which fits best to the examples. A hypothesis extrapolates
from the specific samples Sfix ⊆ S to a complete mapping H : X → Y . Thus, it is
a model for the underlying process, which generates the data (see Figure 2.2 (a)).

2.1.3 On-line Learning

Similar to the definition of Giraud-Carrier [28] we define2:

On-line Learning Task: A learning task is on-line, if the training examples used
to solve it are not available a priori but become available over time, usually
one at a time. Learning my need to go on (almost) indefinitely.

On-line Learning Algorithm: A learning algorithm is on-line if, for any given
training sample (x1, y1), . . . , (xT , yT ), it produces a sequence of hypotheses
h0, h1, ..., hT , such that ht depends only on ht−1 and the current sample (xt, yt).
The main characteristics of an on-line learning algorithm are: no re-processing
of previous examples is necessary since each ht is viewed as a best approxima-
tion so far of the target application, the learner can, at any time, produce an
answer to a query and the quality of its answer improves over time. Hence,
there is no separation on the training and recognition stage, they run in a
loop.

In other words, on-line learning algorithms, contrary to off-line learning algorithms,
see each sample only once. In supervised on-line learning we are dealing with a

2In Giraud-Carriers words it is an incremental learning task, but he does not distinguish
between incremental and on-line learning.
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(a) off-line (b) on-line

Figure 2.2: In off-line learning (a) all training data is available from the beginning,
whereas in on-line learning (b) a current hypothesis Ht−1 is updated by a new training
sample xt in order to get a new hypothesis Ht.

sequence of labeled samples , which are drawn from the distribution P . An on-line
learning algorithm takes as input a hypothesis Ht−1 : X → Y and a new training
example (xt, yt). The algorithm returns an updated hypothesis

Ht = update(Ht−1, (xt, yt)). (2.1)

At any time t a model is available, since the hypothesis models the data generating
process (see Figure 2.2 (b)).

In general, off-line classifiers tend to perform better since they are able to build
statistics based on all examples at once. A lossless on-line learning algorithm is
an algorithm that returns a hypothesis exact to what the corresponding off-line
algorithm would return given the same training data. However, on-line algorithms
have advantages or are even necessary in the following cases:

Large Training Data: The whole data does not fit into memory at once. On-line
algorithm can thus cope with and even benefit from a large amount of data.
The on-line algorithm is able to sample from the overall distribution and not
only from the fixed subset as it is the case in the off-line versions. The explosive
increase of data and information makes on-line learning algorithm more and
more important for large scale learning approaches.

Availability: Not all the data is available at the beginning. Further, the data
generation process itself may change over time, i.e., the distribution P is
a time depended one Pt. Hence, the goal of an on-line learner is to forget
irrelevant information and specialize to the current situation, which usually is
an easier but time dependent sub-problem [9, 127].
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2.2 Pattern Recognition System

Following Duda et al. [19] a pattern recognition system can be subdivide into

(i) sensing,

(ii) segmentation,

(iii) feature extraction/selection,

(iv) classification, and

(v) post-processing.

In this thesis, we focus mainly on the points (iii) and (iv). The features and the
classifier are somehow coupled (see also Section 1.2). On the one hand, if an ideal
feature is given the classifier can be very simple, e.g., the decision is if the feature
is present or not. On the other hand, if we have access to a powerful classifier the
need for clever feature extraction/selection is not necessary.

2.2.1 Feature Selection

Feature selection aims to determine useful features after feature extraction based on
appropriate rules. Feature selection reduces the dimensionality of the feature space
and removes the redundant, irrelevant or noisy data. Thus, it speeds up, improves
the data quality, and increases the accuracy of the final hypotheses [8]. Standard
feature selection methods can be broadly divided into three methods (following [45]),
which are described in the following:

Filter Methods: They typically use some kind of heuristics to estimate the relative
importance of different features. This can either be done by evaluating each
feature separately or as a set (combination) of features. The algorithm then
chooses a subset of n features. One can argue that a disadvantage is that the
algorithm will select redundant features, because similar features will achieve
similar weights. Summarizing, filter methods find a good subset before a
machine learning algorithm is applied.

Wrapper Methods: This methods directly evaluate the performance of a subset
of features by measuring the performance of a model trained on that subset.
Thus, the extremal case is an exhaustive search of all possible feature subsets
(2|F|), which, indeed, is enormous. The advantages are that it delivers the
optimal subset for the used learning algorithm, it captures the combination of
the features, and removes redundant features. The disadvantage is, that it is
very inefficient.
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Filter-Wrapper-Hybrid: Embedded methods perform variable selection in the
process of training and are usually specific to given learning machines. These
approaches, after feature extraction, somehow combine the steps of feature
selection and classifier training in one framework. At each stage an evaluation
function is used to select an attribute, that has the best ability to discriminate
among the classes. In each iteration, with an user supplied feature, the algo-
rithm ranks the features, that have been selected so far and adds the highest
ranking feature to the feature subset. For example, FeatureBoost [87] is such a
hybrid algorithm. The goal is to search for alternate hypotheses amongst the
features. A distribution over features is kept and updated at each iteration.

The approaches used in this thesis, Off-line Boosting for Feature Selection and its
counterpart On-line Boosting for Feature Selection, are filter-wrapper-hybrid ap-
proaches.

2.3 Ensemble Methods and Boosting

Ensemble methods can improve the performance of a given learning algorithm
through the combination of base models. The fusion is a mapping from local decision
(meta-feature) to the final decision (see Figure 2.3).

Figure 2.3: Using a proper combination of individual hypotheses H1(x), . . . ,Hn(x)
a master -hypothesis H(x) is constructed, which improves the performance. In order
to construct different hypotheses, this can be done by applying the same learning
algorithm on (i) different subset of the training data (bagging); (ii) different weighted
training data (boosting) or (iii) using different learning algorithm (stacking).

Ensemble construction is one of the fields of machine learning, that is receiving
most research attention, mainly due to the significant performance improvements
over single classifiers, that have been reported with ensemble methods. The main
steps are model generation and combination [18]. The individual classifiers should
be as accurate as possible, but simultaneously should disagree as much as possible.
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These two objectives are somehow conflicting. If the classifiers are more accurate,
it is obvious that they must agree more frequently.

Many methods have been developed to enforce diversity on the classifiers, e.g., using
different combination schema, different classifier models, different feature subsets,
or different training samples. The first method is also known as “voting classifier
ensembles”. A sample is presented to all “experts” (base models) of the ensemble
and their outputs are combined in some manner (e.g., voting, averaging) in order
to yield the finial decision (e.g., the Mixture of Experts [54] approach). When using
different training samples (training datasets), the learning algorithms run several
times, each time with a different partition of the whole training set. Bagging and
Boosting corresponds to that group.

Bagging [13] (after bootstrap aggregating) just generates different bootstrap samples
from the training set. Boosting methods adaptively change the distribution of the
training set based on the performance of the previous classifiers. Unlike bagging,
which is largely a variance reduction method, boosting appears to reduce both bias
and variance.

2.3.1 Discrete AdaBoost

We focus on discrete AdaBoost (adaptive boosting), a specific boosting algorithm
for classification proposed by Freund and Schapire [24] (a good overview is given
in [25]). Boosting is very popular and, hence, various variants have been devel-
oped (e.g., Real-Boost [24], LP-Boost [16]). AdaBoost has been analyzed carefully
(e.g., [112]) and tested empirically by many researchers. For instance, following
the overview given in [111], boosting has been used for text recognition, text filter-
ing, routing, “ranking” problems, learning problems in natural language processing,
medical diagnostic, and customer monitoring and segmentation.

In general, boosting is a method for improving the accuracy of any given learning
algorithm. This is done by combining (a weighted voting) of N hypotheses which
have been generated by repeating training with different subsets of training data.
Let us first define some terms:

Weak classifier: A weak classifier has only to perform slightly better than random
guessing, i.e., for a binary decision task, the error rate must be less than 50%.
The hypothesis h : X → {−1,+1} generated by a weak classifier is obtained
by applying a learning algorithm.

Strong classifier: Given a set of N weak classifiers, a strong classifier is computed
as linear combination of the weak classifiers. The value f(·) (which is related
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to the margin) can be interpreted as a confidence measure.

H(x) = sign(f(x)), where f(x) =
N∑
n=1

αnhn(x) (2.2)

In addition, it can be easily shown [26] (see Appendix A) that boosting develops
the likelihood estimator

H(x) =
1

2
log

(
P (y = 1|x)

P (y = −1|x)

)
(2.3)

or equivalently

P (y = 1|x) =
exp(H(x))

exp(H(x)) + exp(−H(x))
. (2.4)

The basic algorithm, shown in Algorithm 1, works as follows: Given a training set
S with positive and negative labeled samples and an initial uniform distribution
w0 = (w0,1, . . . , w0,L), w0,l = 1

L
over the examples l = 1, . . . , L. A weak classifier

h(x) is trained based on the training set S and weights w(x), i.e.,

hn = arg min
hn

L∑
l=1

wn,l ·
{

1 hn(xl) 6= yl
0 otherwise.

(2.5)

Based on the weighted error en (with respect to wn) of the weak classifier hn it gets
assigned a voting-weight

αn =
1

2
ln
(1− en

en

)
. (2.6)

Finally, the weight distribution

wn+1,l = wn,l ·
{

exp(−αn) h(xl) = yl
exp(αn) h(xl) 6= yl

(2.7)

is updated such that the probability increases for the samples, that were misclas-
sified. If the sample is classified correctly the corresponding weight is decreased.
Therefore, the algorithm focuses on the difficult examples. The process is repeated
and at each boosting iteration a new weak hypothesis is added until a certain stop-
ping condition is met (e.g., a given number of weak classifiers are trained).

This is a shift in mind: instead of trying to design a learning algorithm that is
accurate over the entire space, we can instead focus on finding learning algorithms,
that only need to be better than random guessing and combine them.

Freund and Schapire [24] proved strong bounds on the training and generalization
error of AdaBoost (see Appendix A). For the case of binary classification the training
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Algorithm 1 Off-line AdaBoost (Freund and Schapire, [24])

Require: training set S = {(x1, y1), . . . , (xL, yL)}|yi ∈ Y = {−1,+1}
//initialize weights
w0,l = 1, l = 1, ..., L

for n = 1, 2, .., N do
//normalization of weights such that wn is a distribution
wn,l =

wn−1,l∑L
i=1 wn−1,i

//train weak classifier with respect to wn

hn = arg minhn

∑L
l=1wn,l ·

{
1 hn(xl) 6= yl
0 otherwise

//calculate error
en =

∑
l:hn(xl)6=yl

wn,l
if en = 0 or en >

1
2

then
exit

end if

//calculate voting factor

αn = 1
2

ln
(

1−en

en

)
//update prob. distribution

wn+1,l = wn,l ·
{

exp(−αn) h(xl) = yl
exp(αn) h(xl) 6= yl

end for

//output the final (strong) classifier

H(x) = sign
(∑N

n=1 αn · hn(x)
)

error drops exponentially fast with respect to the number of boosting rounds N (i.e.,
number of weak classifiers). One may suggest that boosting will overfit if it run for
too many rounds, i.e., as N becomes large. Empirically, it was shown that boosting
often does not overfit, even when running for thousands of rounds. Moreover, it was
observed that AdaBoost continues to drive down the generalization error long after
the training error had reached zero. In response to these empirical findings, Schapire
et al. [112] gave an alternative analysis in terms of the margins of the training
examples. Large margin on the training set can be translated into a superior bound
on the generalization error. More recently, an analysis of the behavior of AdaBoost
was presented by Rudin et al. [110].
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Furthermore, boosting can be viewed as a maximum margin classifier which achieves
a hard margin (i.e., focuses on the “hard” to learn samples) and so it is also related
to Support Vector Machines (SVM) [102]. However, since hard margin is achieved
the algorithm is very noise sensitive. Modification of the algorithm are proposed to
overcome this issue, e.g., [56, 90].

2.4 Off-line Boosting for Feature Selection

As mentioned earlier, feature selection and feature combination is highly relevant in
machine learning. Compared to other approaches, boosting has many advantages;
therefore it is quite popular [103].

Tieu and Viola [123] introduced boosting methods for feature selection. Also other
authors investigated in this direction, e.g., [87, 103]. Boosting is used as a meta
learning algorithm for feature subset selection. The idea behind these approaches
is that each feature corresponds to a single weak classifier and boosting selects
from the features. A pool of possible features F is given. Since this feature pool
can be very large, for computational reasons the algorithm focuses on a subset
Fsub = {f1, ..., fk} ⊆ F .

Training proceeds in a similar manner to standard boosting, as shown in Algo-
rithm 2. In each iteration n the algorithm selects one new feature and adds it
(with the corresponding voting factor) to the ensemble. All features are evaluated
and the best one is selected, which forms the weak hypothesis hn. The weight αn
is set according to the error of hn. Finally, a strong classifier H is computed as
weighted linear combination of the weak classifiers. As already stated the training
error drops exponentially fast over the boosting iterations, which are now equivalent
to the number of selected features.

2.5 Image Features

The main reason why in computer vision features are used instead of raw pixel values
as input to a learning algorithm is to reduce the intra-class variability while increas-
ing the extra-class variability. In addition, “ad-hoc” knowledge can be included.

The Off-line Boosting for Feature Selection algorithm was used in the seminal work
of Viola and Jones [130] in order to build a real-time face detector. The main
assumption is that a small number of simple image features is sufficient to distinguish
the object appearance from background. To be precise, Haar-like features are used
as shown in Figure 2.4 (a). These six different prototypes are scaled independently
in height and width and form a specific feature. The feature value of a Haar-like
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Algorithm 2 Off-line AdaBoost for Feature Selection (Tieu and Viola [123])

Require: training set S = {(x1, y1), . . . , (xL, yL)}|yi ∈ Y = {−1,+1}
//initialize weights
w0,l = 1, l = 1, ..., L

for n = 1, 2, .., N do
//normalization of weights such that wn is a distribution
wn,l =

wn−1,l∑L
i=1 wn−1,i

// train all weak classifiers
for m = 1, 2, ..,M do

//train weak classifier with respect to wn

hn,m = arg minhn

∑L
l=1wn,l ·

{
1 hn(xl) 6= yl
0 otherwise

// calculate error
en,m =

∑
i:hn,m(xi)6=yi

wn,i
end for

// choose weak classifier with the lowest error
m+ = arg minm(en,m)
en = en,m+ ; hseln = hn,m+

if en = 0 or en >
1
2

then
exit

end if

// calculate weighting factor

αn = 1
2
· ln
(

1−en

en

)
// update weight distribution

wt+1,i = wt,i ·
{ exp(−αt) h(xi) = yi

exp(αt) h(xi) 6= yi
end for

feature is calculated as the sum of pixels within rectangular regions, which are either
positive (black regions) or negative (white regions) weighted. Note, the computation
of all these feature types can be done very efficiently using integral images [130] and
integral histograms [100] as data structures. This allows for exhaustive template
matching for the whole image. An integral image, denoted as II, sums up all the
pixel values from the upper left up to the current position. More formally, it is
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(a) Haar-like features (b) integral image

Figure 2.4: The value of the classical Haar-like feature (a) is the difference of pixel
values between the white and the black marked region, which can be efficiently calcu-
lated using the integral image (b). Efficient calculation of the sum over a rectangular
area. The value of the integral image at Position P1 is the sum of the pixel values in
region A. P2 corresponds A+B, P3 to A+ C and P4 to A+B + C +D. Therefore,
the sum over the area D can be calculated by P4 + P1 − P2 − P3.

defined on an image I as

II(x, y) =
x∑

x′=1

y∑
y′=1

I(x′, y′). (2.8)

The pre-calculation of an integral image for all pixels can be efficiently implemented
in one pass over the image. Afterwards, any sum of any rectangular region can
be computed by only 4 memory accesses and 3 additions, see Figure 2.4 (b) for
an example. This allows to do exhaustive template matching when scanning the
whole image. Since these features can only be calculated over rectangular regions
the generic angles have to fit to the object models appearance. This problem can
be solved by computing the integral structures at generic angles. An approximation
for a given angle is easily computed by the use of integral image. Lienhard [74]
introduced an additional set of rotated features. Barczack et al. [7] proposed a
method to convert a previous trained classifier to work at any angle, so rotated
objects can be detected. Another approach is used by Wu et al. [138] for fast
rotation invariant face detection.

In order to select a “good” subset from this highly over-complete feature set, boost-
ing for feature selection is applied on a large set of positive labeled images (about
5000). Negative image are bootstrapped from a set of background images, i.e., im-
ages which do not contain the object of interest (i.e., the current classifier is applied
on them and selects those sub-patches were it has a high response). In order to use
boosting for feature selection, each image feature corresponds to a weak classifier.
To obtain a weak classifier hj from a feature j, we model the probability distribution
of this feature for positive and negative samples with fj(x) evaluating this feature
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on the image x. A hypothesis is achieved by a simple decision stump [130] and hence
we get for a feature j

hj(x) = pjsign(fj(x)− θj), (2.9)

where θj := 0.5|m+ + m−| is the threshold and pj := sign(m+ −m−) the parity of
the decision. The values

m+ =
1

|X+|
∑

x∈X+

fj(x) and m− =
1

|X−|
∑

x∈X−
fj(x) (2.10)

are the calculated means of the feature responses for all positive X+ and negative
X− samples.

The work of Viola and Jones, paved the way for boosting in the area of computer
vision. Many authors analyzed and used this approach with different extensions.
Some of them considers other (more sophisticated) feature types (e.g., [73, 86,
133, 142]). Other extensions address the problem of the learning algorithm in order
to make it more stable and noise invariant, e.g., [101]. Others take the fact into
account, that the learning problem is highly unbalanced, i.e., much more negative
image patches are available [131]. Other improvements focus an the efficiency to
further speed up the recognition process (e.g., [11, 120, 125]).
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On-line Boosting for Feature
Selection1

In this chapter we introduce the novel On-line Boosting for Feature Selection algo-
rithm. In order to develop this algorithm we take an on-line variant of AdaBoost [92].
Thus, we first, review this method, which is then extended to perform feature se-
lection. We refer to the proposed algorithm in this chapter as the “original” one.
All further improvements are yielded as extensions and are described in Chapter 4.
Proof of concept is done by showing an illustrative experiment. By defining simple
image features, we later make it applicable for various computer vision applications,
which are indeed shown in the second part of this thesis.

3.1 On-line Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 On-line Boosting for Feature Selection . . . . . . . . . . . . . . . . 36

3.2.1 Discussion of the Switching . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Illustrative Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1Adapted and extended from H. Grabner, and H. Bischof. On-line Boosting
and Vision. In Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 260-268, 2006. [30]
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3.1 On-line Boosting

To obtain an on-line boosting algorithm (i.e., an algorithm, that operates on a
single example and discards it after updating), each of the boosting steps described
in Section 2.3.1 has to be done on-line. Thus a set of weak classifier (h1, . . . , hn) and
their corresponding voting weights (α1, . . . , αn) are given, which form the current
strong classifier H(x). This (current) classifier is updated whenever a new sample
arrives [63]. On-line updating the weak classifiers is not the problem because many
on-line learning algorithms for generating a hypothesis can be used. The crucial
step is the computation of the weight distribution for the samples, because we do
not know a priori the difficulty of a sample (i.e., we do not know if we have seen the
sample before).

We use ideas proposed by Oza and Russell [92] and the experimental comparisons
they did [91]. The basic idea is that the importance (difficulty) of a sample can be
estimated by propagating it through the set of weak classifiers. One can think of this
as modeling the information gain with respect to the first n classifier and code it by
the importance weight λn (initialized by λ0 = 1). The update of the n+ 1-th weak
classifier is done with respect to the importance weight λn of the current sample.
Either λn is used as a learning rate in the learning algorithm or by k-times repeated
updating k ∼ Poisson(λ) as proposed by Oza. For updating the weak classifiers, any
on-line learning algorithm can be used. In fact, the error of the n-th weak classifier
is estimated by

ên =
λwrongn

λwrongn + λcorrn

, (3.1)

where the weights λwrongn and λcorrn are the sum of importances of correctly and
incorrectly classified samples seen so far. In fact at the n-th selector the importance
λn−1 is added to one of them, i.e.

λcorrn = λcorrn + λn−1 hn(x) = y (3.2)

λworngn = λwrongn + λn−1 hn(x) 6= y. (3.3)

With respect to the estimated error ên the voting weight

αn =
1

2
log

(
1− ên
ên

)
(3.4)

can be calculated. The update of the importance λ for the n + 1-th weak classifier
is done again according to the error and the decision of the weak classifier

λn = λn−1 ·

{
1

2(1−ên)
hn(x) = y

1
2(ên)

hn(x) 6= y.
(3.5)
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Algorithm 3 On-line AdaBoost (Oza and Russell [92])

Require: training example (x, y), y ∈ {−1,+1}
Require: strong classifier H (initialized randomly)
Require: weights λcorrn , λwrongn (initialized with 1)

initialize the importance weight λ0 = 1
// for all selectors
for n = 1, 2, .., N do

// update each weak classifier
hn = update(hn, 〈x, y〉, λn−1)

// estimate errors
if hn(x) = y then

λcorrn = λcorrn + λn−1

else
λwrongn = λwrongn + λn−1

end if
ên = λwrong

n

λcorr
n +λwrong

n

if ên = 0 or ên >
1
2

then
exit

end if

// calculate voting weight

αn = 1
2
· ln
(

1−ên

ên

)
// update importance weight
if hn(x) = y then

λn = λn−1
1

2·(1−ên)

else
λn = λn−1

1
2·ên

end if

end for

The on-line algorithm shown in Algorithm 3 requires that the number of weak
classifiers is fixed at the beginning. Note, the interchange of roles: In the off-line
case all samples are used to update (and select) one weak classifier, whereas in the
on-line case one sample is used to update all weak classifiers and the corresponding
voting weight.
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Oza has proven, if off-line and on-line boosting are given the same training set, then
the weak classifiers (Naive Bayes classifiers) returned by on-line boosting converges
statistically to the one obtained by off-line boosting as the number of iterations
N → ∞. The proof sketch and the argumentation are the following: The first
weak classifier gets the samples exactly as the off-line classifier. Since any on-line
learning algorithm will yield the same results when it converged. The main point
in boosting is to adaptively re-weight the samples with respect of the error of the
former weak classifiers. Thus the weighting of the training samples change from
weak classifier to weak classifier. If the first weak classifier is converged, then also
the estimated error and the statistic will converge and thus the second weak classifier
will be given the same examples and the same weight distribution as in the off-line
case. Summarizing, after the n-th weak classifier is converged it delivers the correct
weight distribution for the n + 1-th classifier. Thus, training and convergence will
start from the beginning. Therefore, for repeated presentation of the training set
on-line boosting and off-line boosting deliver the same result, which yields to the
following theorem:

Theorem (Oza [89], page 85): Let hofflinen (x) as the n-th weak model returned
by off-line AdaBoost and define honlinen (x) as the n-th weak model returned by
the on-line algorithm. Given the same training set, if honlinen (x) and hofflinen (x)

for all n ∈ {1, 2, ..., N} are Naive Bayes classifier, then honline(x)
P→ hoffline(x).

Another interpretation is given in Appendix B, where we obtain similar results.
Only the update of the importance weight λ, which is propagated through the set
of selectors, differs.

3.2 On-line Boosting for Feature Selection

The approach of Oza and Russell, reviewed in the last section, is not directly appli-
cable to feature selection. The essential novelty of our approach is, that we propose
an on-line boosting algorithm for solving the feature selection task. For this purpose
we need a further concept.

Selector: Given a set of M weak classifiers with hypothesis Hweak = {h1, ..., hM},
a selector selects exactly one of those hsel(x) = hm(x) where m is chosen
according to an optimization criterion. In fact, we use the estimated error ei
of each weak classifier hi ∈ Hweak such that m = arg mini ei.

Similar to the off-line case, the weak classifiersHweak correspond to features, i.e., the
hypotheses generated by the weak classifier is based on the response of the feature.
One selector can therefore select from a subset of M features Fsub = {f1, ..., fM | fi ∈
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F} of its feature pool. Note, the selector can be interpreted as a classifier (it switches
between the weak classifiers). Training a selector means that each weak classifier is
trained (updated) and the best one (with the lowest estimated error) is selected.

In summary: The main idea is to apply on-line boosting not directly to the
weak classifiers but to the selectors.

In the off-line case this is not required, because at each boosting round one new
weak classifier is added to improve the strong classifier. However, it is the same
as the original algorithm [123, 130] as can be easily observed from Figure 3.1 (a),
where at each time a new selector is added.

In contrast, the overall principle of our novel on-line approach is depicted in Fig-
ure 3.1 (b) and shown in Algorithm 4. In particular, the training of the new On-line
Boosting for Feature Selection works as follows: First, a fixed set of N selectors
hsel1 , .., hselN is initialized randomly, each with its own feature pool Fn. When a new
training sample (x, y) arrives the selectors are updated. This update is done with
respect to the importance weight λ of the current sample. The weak classifier with
the smallest error is selected by the selector

arg min
m

(ên,m), where ên,m =
λwrongn,m

λcorrn,m + λwrongn,m
(3.6)

is the error of the m-th weak classifier hn,m in the in the n-th selector, estimated
from the weights of correctly λcorrn,m and wrongly λwrongn,m classified examples seen so
far. Finally, the corresponding voting weight αn and the importance weight λn of
the sample are updated and passed to the next selector hseln+1. This procedure is
repeated for all selectors. The number of selectors is constant similar to the number
of weak classifiers in Oza’s on-line algorithm. A strong classifier is obtained by linear
combination of selectors:

H(x) = sign
( N∑
n=1

αnh
sel
n (x)

)
. (3.7)

In contrast to the off-line version a strong classifier is available at any time.

3.2.1 Discussion of the Switching

The information exchange within the selectors is done by the importance λ of the
labeled example x. As can be easily seen (Equation B.10), λn can be written as

λn = exp(−yHn−1(x)) = exp
(
− y

n−1∑
i=1

αih
sel
i (x)

)
. (3.8)
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(a) Off-line boosting for Feature Selection

(b) On-line boosting for Feature Selection

Figure 3.1: Flow charts for the standard Off-line Boosting for Feature Selection
using the new formalism of selectors (a) and the novel On-line Boosting for Feature
Selection (b).
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Algorithm 4 On-line AdaBoost for Feature Selection

Require: training example (x, y〉), y ∈ {−1,+1}
Require: strong classifier H (initialized randomly)
Require: weights λcorrn,m , λwrongn,m (initialized with 1)

initialize the importance weight λ0 = 1
// for all selectors
for n = 1, 2, .., N do

// update the selector hseln
for m = 1, 2, ..,M do

// update each weak classifier
hn,m = update(hn,m, 〈x, y〉, λn−1)

// estimate errors
if hn,m(x) = y then

λcorrn,m = λcorrn,m + λn−1

else
λwrongn,m = λwrongn,m + λn−1

end if
ên,m =

λwrong
n,m

λcorr
n,m +λwrong

n,m

end for

// choose weak classifier with the lowest error
m+ = arg minm(en,m)
ên = ên,m+ ; hseln = hn,m+

if ên = 0 or ên >
1
2

then
exit

end if

// calculate voting weight

αn = 1
2
· ln
(

1−ên

ên

)
// update importance weight
if hseln (x) = y then

λn = λn−1 · 1
2·(1−ên)

else
λn = λn−1 · 1

2·ên

end if

end for
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Thus, it depends on the n − 1 previous weak classifiers and their decisions. In
the on-line setting all the classifiers are depending on time, hence, the statistics of
the samples can only be correctly estimated when the classifier H t

n draws the same
decision for all former time indexes t = 1, . . . , T . Otherwise the true statistic is
disturbed. Thus, switching of the weak classifiers within one selector introduces
noise to the whole learning process. However, switches of features is quite common
and even necessary if the learning problem changes over time, i.e., features have to
be exchanged in order to be adaptive. The following strategies have been considered
during the work on this thesis:

Reseting: After the n-th selector has switched to another weak classifier the corre-
sponding learned parameters are reseted for all following selectors n′ > n. Due
to the fact, that the selectors converges sequentially, this approach is appro-
priable. No switching noise is introduced, however, many drawbacks exists:
By reseting, all former seen examples are implicitly discarded for the following
selectors and the complexity of the strong classifier is certainly reduced. In
particular, this is a big disadvantage wen coping with changing environments,
where early selectors are switching. Further on, the selectors may start oscil-
lating if the errors are similar, which is usually the case for later onces with
high errors. Nevertheless, reseting some statistics in combination with the
WaldBoost algorithm (see Section 4.2) is useful.

Ignoring: Due to our empirical knowledge (from many experiments), we can also
benefit by propagating the example through all weak classifiers even when they
are not converged. This can be explained by the fact, that they share some
common statistics. We observed, that on average 80% to 90% equal decisions
are drawn when a switch happens.

Fading Memory: Using fading memory for all parameter, is a compromise of the
former two mentioned approaches. This is discussed in more detail in Sec-
tion 4.3.

Gradient Feature Selection: Liu and Tu [77] propose a gradient feature selection
mechanism for on-line boosting. Hence, they present an unified objective for
feature selection and weak classifier updating. See Section 4.5 for more details.

3.3 Illustrative Experiment

In order to demonstrate the proposed algorithm, we apply it on a simple toy example.
For that purpose we consider the two-dimensional XOR problem. The goal is to train
a boosted classifier, which distinguishes between the positive and negative labeled
samples x = (x1, x2)T ∈ IR2.
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In order to perform feature selection, a selector holds a set of features which are
possible projections of the data on a line. We encode it by the normalized row-vector
f = (fx1, fx2), which projects the point x to the feature value by the inner-product
f · x. A weak classifier is trained by estimating the median of the positive m+ and
negative m− class, respectively. We achieve a hypothesis as simple decision stump
and hence we get for a feature j

hj(x) = pjsign(fj · x− θj), (3.9)

where θj := 0.5|m+ +m−| is the threshold and pj := sign(m+−m−) the parity of the
decision. It can be shown easily, that it is not possible the separate the two classes
with any hypothesis from this hypothesis class. Thus, we apply Off-line Boosting
for Feature Selection as well as our proposed on-line counterpart.

Figure 3.2 depicts the result for training four selectors each with 8 weak classifiers.
The weak classifiers are equally distributed to cover the angle range from 0 to π and
thus can describe all possible lines at that angles. For on-line training 250 randomly

P (y = 1|x) decision boundary

off
-l

in
e

on
-l
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Figure 3.2: Final strong classifier achieved by using off-line boosting (first row) and
by the on-line version after 250 updates (second row).
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selected points are drawn from the dataset. Qualitatively the results are equivalent.
In the following we take a closer look.

The first two rows of Figure 3.3 shows the weak classifiers decision boundaries for
the off-line and the on-line approach. Details are depicted in the following two rows,
whereas the third row shows the chosen features (the angle of the projection) within
each of the four selectors. The index on the horizontal axes shows the feature and the
height of the bars the value of the voting weight α. As can be seen the red (on-line)
and blue (off-line) bars are similar. The learned threshold of the weak classifiers
(position of the decision boundary on the projection) are shown in the last row.
Dotted lines are those obtained by the off-line algorithm (blue: median m− for the
negative class; red: median m+ for the positive class; black for the threshold θ).

The convergence of the selection process is shown in Figure 3.4 and verifies the the-
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Figure 3.3: Comparison of the chosen features by the selectors using the Off-line and
On-line Boosting for Feature selection. The decision boundary of the weak classifiers
(first two rows) are similar, which is shown in detail by the selected features (third
row; the height of the bar corresponds to α), and by the learned thresholds (last row).
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(a) feature switches (b) switching noise for the 4-th selector

Figure 3.4: Feature switches within the four selectors (a). As shown by the theory,
if the data is sampled according to one fixed distribution the convergence of the
selected weak classifier (rows) as well as its assigned voting weight (encoded by the
color) converges sequentially, beginning with the first selector. Before the selectors has
converged (i.e., stable selection of one feature and its corresponding voting-weight)
noise is introduced in the weight distribution. In comparison to the off-line version
the distribution is spread out (b).

oretical results. First, the first weak classifier has to converge. Thus, the estimated
error will converge and hence the selector selects the same feature as the off-line al-
gorithm. Afterwards this is going to happen for the next selectors and so on. Colors
in the plots show the value of the voting weight α.

Figure 3.5 (a) finally shows the training error on the dataset plotted over time. In
addition, the cumulative margin distribution is depicted in Figure 3.5 (b) for four
different times. The margin [112] is defined as

margin(x) :=
y
∑N

n=1 αnhn(x)∑N
n=1 αn

=
yH(x)∑N
n=1 αn

(3.10)

and thus is positive if the correction is correct and negative otherwise. Boosting
maximizes the minimal margin [102]. Both, the training error and the margin dis-
tribution converges to the off-line counterpart2. To sum up, the proposed algorithm
scans the whole feature set and provides at any time a subset that is as good as
possible. In addition, we also get a weight for each selected feature, which allows to
combine them into a strong classifier.

2Sometimes it happens that the on-line version beets the off-line version. This can be explained,
since the off-line boosting is a greedy approach and thus it do not achieve the optimal solution.
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(a) performance (b) cumulative margin

Figure 3.5: Training error of the on-line approach potted over time, i.e., number of
updates (a). Further, the cumulative margin distribution (b), shown at four times,
converges to that one achieved by the off-line algorithm.

3.4 Image Features

In this section we describe how the proposed On-line Boosting for Feature Selection
algorithm can be applied to compute vision applications. Similar as in the off-line
case (see Section 2.4), we define (simple) image features, which corresponds to weak
classifiers. In addition, to the classical Haar-like features [130] we use the following
two types:

Orientation histograms: First, image filtering is done to obtain a gradient image.
We use the Sobel-filtering, with kernels for horizontal and vertical edges. A
magnitude weighted histogram over the gradient angles (directions) is built
to represent the underlying rectangular patch. In particular, we use a 8 bin
orientation histogram with equidistant bin size. The basic idea is to describe
the appearance of an object part by the local gradient information. This is
used in many other approaches, e.g., [15, 68, 78] and also shows relations to
the human visual system [20].

Local Binary Patterns (LBP): We use a simple version of LBP [85], especially
a four-neighborhood (i.e., 24 = 16 patterns) as a 16 bin histogram feature
(similar to [143]). This feature is a texture descriptor which captures the
statistic of normalized pixel values in a local neighborhood. The LBP-value
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of a 3× 3 image patch x is calculated as follows

LBP (x) =
3∑
i=0

s(xi − xcenter) · 2i with s(z) =

{
1 z ≥ 0
0 z < 0

, (3.11)

where xi are the positions around the center pixel (xcenter) using fourth neigh-
borhood. The final representation is a histogram of the LBP values obtained
by shifting the 3× 3 patch in a specified rectangular region.

Note, that the computation of all feature types can be done very efficiently using
integral images [130]. This idea easily can be adapted to represent histograms: for
each bin one integral image is built separately [40, 100]. These features allow for
describing a large variety of objects. However, one can think of combining more
of such (local) features (e.g., color feature or covariance features) and also include
global features, like in [144].

Similar to the off-line case each weak classifier corresponds to a feature. The only
difference is that we have to implement an on-line learning algorithm for the weak
classifiers. In general, any on-line learning algorithm can be used which builds a
weak classifier hj for a feature j, where fj(x) evaluates this feature on the image x.
In fact, depended on the feature type we used the following methods.

Haar-like Features: As hypotheses for the classical Haar-like wavelets we use
either a simple threshold

hj(x) = pjsign(fj(x)− θj), (3.12)

where θj = 0.5|µ+ + µ−| and pj = sign(µ+ − µ−) (3.13)

or a Bayesian decision criterion, based on the estimated Gaussian probability
density function g(x|µ, σ):

hj(x) = sign(P (1|fj(x))− P (−1|fj(x))) ≈
≈ sign(g(fj(x|µ+, σ+)− g(fj(x)|µ−, σ−)). (3.14)

The principle is depicted in Figure 3.6.

Histogram Features: For the histogram based features (orientation histogram
and LBP), we use nearest neighbor learning with a distance function D (in
fact, we use the Euclidean distance)

hj(x) = sign(D(fj(x),pj)−D(fj(x),nj)), (3.15)

where the cluster centers for positive pj and negative nj samples are
learned. In fact, we estimate two Gaussian-distributions for each bin, one
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(a) (b)

Figure 3.6: Estimated distributions for positive and negative samples for a feature
fj (a), which are used to create a weak classifier (b).

for the positive and one for the negative class. Hence, we end up with
pj = ((µ+

1 , σ
+
1 ), . . . , (µ+

8 , σ
+
8 )) and nj = ((µ−1 , σ

−
1 ), . . . , (µ−8 , σ

−
8 )).

The remaining task is to estimate the means and variances of the Gaussian-
distributions, which are then used to build the hypothesis. In other words, the
values µ+, µ−, σ+, and σ− have to be determined in an on-line manner. We present
two very simple approaches, based on recursive techniques. In practice both are
efficient and achieve similar performance.

Kalman-Filtering: The Kalman-filter is a widely used recursive technique for
tracking linear dynamical systems under Gaussian noise [135]. The properties
of the state space model

zt = A · zt−1 + B · ut−1 + wt−1 (3.16)

yt = C · zt + vt; (3.17)

are determined by the matrices A, B and C. ut is the system input, wt ∼
N (0,Q) and vt ∼ N (0,R) are uncorrelated random noise processes with
covariance Q and R, respectively. zt are the state variables and yt the observed
system output.

In order to build a hypothesis hn as above, we incrementally estimate the
means (µ+, µ−) and variances (σ+, σ−) by the Kalman-filtering approach.
Thus, we build a simple state space model for estimation the (constant) mean
and achieve µt = µt−1 + vt and σ2

t = σ2
t−1 + vt for the variance. Therefore, we

set A = 1, B = 0, C = 1, Q = 0, R = 0.01 (which indeed are now scalar
values) and furthermore the initial state P0 = 1000, µ0 = 0 and σ2

0 = 0. The
following update equations for the adaptive estimation can be derived:

Kt = Pt−1/(Pt−1 +R) (3.18)

µt = Kt · fj(x) + (1−Kt) · µt−1 (3.19)

σ2
t = Kt · (fj(x)− µt)2 + (1−Kt) · σ2

t−1 (3.20)

Pt = (1−Kt) · Pt−1. (3.21)
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Approximated Median: Following the approximated median rule [81], which in-
crements a running estimate of the median mt by one if the input is larger than
the estimate, and decrements by one if the opposite is true. More formally,

mt =


mt−1 fj(x) = mt−1

mt−1 −Kt fj(x) < mt−1

mt−1 +Kt fj(x) > mt−1

where Kt =
1

2
√
t

(3.22)

is the learning rate, which is motivated by a statistical view. If the number
of samples n is large enough (i.e., n ≥ 30) the central limit theorem can be
applied to obtain a 95% confidence intervall. The true mean is then within
the bound 2σ√

n
[62], where σ2 is the variance of the data distribution. In fact

we set afterwards µ+ = m+ and µ− = m−. The variance is not estimated und
hence only the threshold hypotheses for the Haar-like wavlets are used.
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Chapter 4

Extensions and Discussions

Several modifications and approximations have been made in order to make the
On-line Boosting for Feature Selection, proposed in the last section, more applica-
ble for practical applications1. In the following sections we do this with respect to
(i) speeding up the training process and allowing to explore a larger feature pool;
(ii) speeding up the evaluation process and how to set the complexity of the clas-
sifier (i.e., the number of weak classifiers); (iii) adaptivity; and (iv) including prior
knowledge. Furthermore, we show extensions, which have been developed by other
researchers.

4.1 Speeding up the Training Process . . . . . . . . . . . . . . . . . . 50

4.1.1 Exploring a Large Feature Pool . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Direct Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Sequential On-line Boosting Classifier . . . . . . . . . . . . . . . . 52

4.2.1 WaldBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 On-line WaldBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Time Dependent On-line Boosting . . . . . . . . . . . . . . . . . . 55

4.4 Including Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Classifier Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Direct Re-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Other Extensions and Applications . . . . . . . . . . . . . . . . . . 58

1The reader is pointed to the applications in Part II of this thesis for experiments.
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4.1 Speeding up the Training Process

Assuming a strong classifier with N selectors, which determines the hypothesis class.
In order to evaluate a strong classifier, the N selected features (weak classifiers) have
to be evaluated. In contrast, for updating the strong classifier each weak classifier
within the selectors have to be updated. Both speed and memory are O(MN)
assuming that all N selectors have the same number of M weak classifiers. The
main computational effort is spent for updating the weak classifiers, which depends
on the learning algorithm and the time to calculate the feature value. The time
consumed by our approach is negligible.

On the one hand, for practical applications (e.g., tracking), which have to run in real
time we are limited by the feature pool. But on the other hand, the algorithm has
to provide a “sufficient enough” feature pool in order to achieve a good performing
classifier. In the following we propose two extension to overcome these problems.

4.1.1 Exploring a Large Feature Pool

The whole feature pool F contains an enormous amount of possible features because
of the highly over complete representation (each feature prototype can appear at
different position and scale). Given a 24 × 24 image patch 45, 396 classical Haar-
like features [130] are possible. When increasing the feature pool, e.g., [74] uses
rotated features as well, this value increases to over 100, 000. Thus, for practical,
real time applications, it is nearly impossible to check all features.

In the off-line case at each boosting iteration a new weak classifier is created and
thus a feature from the feature pool F is selected and added it to the ensemble. In
the on-line case each selector has its local feature set Fn. Since we know how good
the individual weak classifiers (features) perform, we propose to adapt the local
feature pool Fn ⊆ F of each selector by replacing the worst feature (i.e., that with
the highest error) with a randomly chosen new one from the feature pool F . Note,
in order to establish a sufficient meaningful statistic the feature has to be given a
certain number of positive and negative updates.

If the process is running for a long time, a lot of features are processed and evaluated
but still only a small number of features is sufficient for updating the selector.
Since in the on-line case learning continues, the model will continuously improve by
exploring more features and training data. One can further think of performing an
off-line pre-computation in order to select “good” (task specific) features Ftask ⊆ F .
The on-line algorithm uses then Ftask to find a solution for the learning problem.
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Figure 4.1: Principle of On-line Boosting for Feature Selection using a shared feature
pool.

4.1.2 Direct Feature Selection2

In order to speed up the training process, we propose to use a single “global weak
classifier” pool (similar to [140]). This pool is shared by all selectors instead of single
pools for each of them as depicted in Figure 4.1. The advantage of this modification
is that for each sample, all weak classifiers need to be updated only once. Then the
selectors sequentially switch to the best weak classifier with respect to the current
estimated λ and the importance weight is passed on to the next selector. This
procedure is repeated until all selectors are updated.

Another advantage is that more features can be considered for one selector. The
disadvantage of this approach is, that the importance of the sample λ is not taken
into account in order to train the weak classifiers. However, our experience in various
experiments (at least by using the image features defined in Section 3.4) shows that
the feature selection is more dominant and thus it is a good approximation.

In order to increase the diversity of the weak classifiers and to allow changes in the
environment, the worst weak classifier of the shared feature pool is replaced with a
new randomly chosen one (same as discussed in the previous section).

2Adapted from H. Grabner, M. Grabner, and H. Bischof. Real-Time Tracking via
On-line Boosting. In Proceedings British Machine Vision Conference (BMVC), pages
47-56, 2006. [31]
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4.2 Sequential On-line Boosting Classifier3

Yet, there remain two important unsolved problems:

(i) optimization of the classifier evaluation speed, and

(ii) automatic determination of the classifier complexity.

We show, how to solve both of these problems. To overcome the first point, following
the idea of Viola and Jones [130], who proposed a cascaded AdaBoost classifier, other
authors tried to improve the evaluation speed of the classifier by e.g., introducing
FloatBoost (weak classifiers can be also removed from the strong classifier) [71],
a vector boosting [52], or by using sequential decision making theory [120]. All
these methods work in an off-line manner, meaning all the training samples are
given in advance and the classifier is kept fixed after being trained. Recently, Wu
and Nevatia [139] investigated to use the cascade approach in the on-line boosting
framework. Their approach uses many heuristic decisions and is not well founded
in the theory.

All current approaches for on-line learning need the number of weak classifiers to
be given in advance. However, in tasks where the decision problem changes over
time, like in object tracking, it is impossible to specify the classifier complexity in
advance. A common approach is to train complex classifiers which can handle all
situations but this is less effective when the task becomes easier.

We introduce Wald sequential decision theory in the on-line framework inspired by
the WaldBoost algorithm [120]. Our approach overcomes both problems of classifier
speed and complexity optimization in the on-line setting.

4.2.1 WaldBoost

The WaldBoost algorithm [120] is an off-line training algorithm, which combines
the AdaBoost training and Wald’s sequential decision theory [134]. The WaldBoost
training goal is to minimize the training error as in AdaBoost but at the same time
to minimize the evaluation time of the classifier. More formally, WaldBoost finds a
quasi-optimal sequential decision strategy S∗ such that

S∗ = arg min
S
T̄S s.t. βS ≤ β, αS ≤ α (4.1)

3Adapted from H. Grabner, J. Sochman, H. Bischof, and J. Matas. Training
Sequential On-line Boosting Classifier for Visual Tracking. In Proceedings

International Conference on Pattern Recognition (ICPR), 2008. [38]



4.2. Sequential On-line Boosting Classifier 53

for specified α and β, where T̄S is the average time-to-decision, αS is the false nega-
tive and βS the false positive rate of the sequential strategy S. For a two class prob-
lem S is a sequence of decision functions S = S1, S2, . . . where Sn : (x1, . . . , xn) →
{−1,+1, ]}. The strategy S takes one measurement xi at a time and in step n
makes a decision Sn based on measurements x1, . . . , xn. The ’]’ sign stands for a
“continue” (do not decide yet) decision. If a decision is ’]’, xn+1 is measured and
Sn+1 is evaluated. Otherwise, the output of S is the class returned by Sn.

The WaldBoost algorithm uses outputs of weak classifiers found by AdaBoost as
measurements (i.e., it uses AdaBoost as a measurement selector). A WaldBoost
classifier then becomes

Hn(x) =


+1 fn(x) ≥ θ

(n)
B

−1 fn(x) ≤ θ
(n)
A

continue θ
(n)
A < fn(x) < θ

(n)
B

, (4.2)

where fn(x) =
∑n

i=1 αihi(x). The goal of training is to find the proper weak clas-

sifiers hn and the thresholds θ
(n)
A and θ

(n)
B . The thresholds can be computed given

the classifier response function fn(x). From the Wald theory, we are looking for two
thresholds on the likelihood ratio Rn. Unfortunately, Rn is difficult to estimate due
to the high dimensionality of both probability densities. Instead, a projection to an
one dimensional space is used [120]

Rn(x) ∼= R̂n(x) =
p(fn(x)|y = −1)

p(fn(x)|y = +1)
. (4.3)

However, the training process rebuilds repeatedly the training and the validation
set using bootstrapping (i.e., already decidable training samples are replaced by
those which could not be decided yet). As the validation set used for estimating
the thresholds changes, direct density estimation gives p(fn(x)|y = C,→ n) where
C ∈ {−1,+1} and → n stands for the condition that the sample has not been
decided up to training step n, instead of desired p(fn(x)|y = C). Using Bayes
formula we get

R̂n(x) =
p(fn(x)|y = −1,→ n)p(→ n|+ 1)

p(fn(x)|y = +1,→ n)p(→ n| − 1)
(4.4)

which leads to estimation of the likelihood ratio taking into account the bootstrap-
ping.

From Wald’s theory the thresholds θ
(n)
A and θ

(n)
B are estimated using R̂n by finding

thresholds for which R̂n ≥ A or R̂n ≤ B respectively, where A = (1 − β)/α and
B = β/(1 − α). A practical way of estimating the thresholds is to look for such
values of fn(x) for which the ratio of negative and positive samples multiplied by
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Figure 4.2: On-line WaldBoost classifier.

the correction factor which takes the discarded samples into account, fulfills the
conditions.

4.2.2 On-line WaldBoost

In order to find the Wald thresholds θ
(n)
A and θ

(n)
B the likelihood ratio R̂(x) from

Equation 4.4 has to be estimated. In the off-line training the statistics are computed
on an independent validation dataset. The on-line training offers an elegant way to
compute an unbiased estimate of the statistics using the given sample only. The
idea is to use the current training sample first as a test sample (not seen before) to
update the Wald statistics before it is used for training the strong classifier. The
probabilities p(→ n|C) can be estimated by computing the portion of samples seen
so far and not decided until n-th selector. The densities p(fn(x)|y = C,→ n) are
estimated from the samples which are not decided until the n-th selector only. In
our implementation they are approximated by Gaussian-distributions. Given these
probabilities and α and β parameters the thresholds θ

(n)
A and θ

(n)
B are estimated as

in die previous section. The overall principle is depicted in Figure 4.2.

However, since a feature-switch in selector k causes a wrong estimate of the statis-
tics of subsequent selectors, the statistics are reset where selectors n ≥ k, i.e.,
p(fn(x)|y = C,→ n) is set to the uniform distribution and p(→ n|C) = 0.5 for
C ∈ {−1,+1}.
This training scheme allows for classifier speedup in both training and evaluation
compared to the original on-line boosting. Moreover, the number of selectors can
be set to a high number and the real classifier complexity (i.e., number of weak
classifiers used) is controlled automatically. Experiments on a visual object tracking
task (see Section ??) show that the method is able to automatically adapt the
classifier complexity to changing problem difficulty.
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4.3 Time Dependent On-line Boosting4

A main limitation in the on-line boosting approach up to now is that it assumes that
the samples are drawn from one fixed distribution. In this extension, we want to
focus on the adaptivity, where we assume a smart changing of the distributions [127].

Concerning robust adaptiveness, the original approach has several limitations: First,
the sample weights contribute forever to the entire model statistics and are only
unlearned (i.e., getting less important) by updating the system with new ones.
Hence, there is yet no control how fast information “fades” away and new one is
gained. Second, samples with high errors get a much higher weight assigned than
low-error samples. When sampling always from the same (static) distribution this
is perfect, since boosting focuses on the difficult examples. Nevertheless, this makes
the system extremely sensitive to label noise and, especially, when dealing with an
adaptive learning problem, this assumption makes no sense anymore.

To overcome these limitations we propose the following modifications: The first
change to on-line boosting considers the basic assumption that the examples are all
drawn from a fixed distribution. This has to be taken into account in all dynamic
elements of the system, especially:

Weak Classifier: The update rule for estimating the probability density functions
(replacing the Kalman-filtering like updates of mean and variance in Equa-
tion 3.12) of the weak classifier.

Errors: To estimate the errors, i.e., both λcorr and λwrong in Equation 3.6. In fact,
at each update step we first multiply these values by a factor K < 1 before
updating with the new importance λ.

As we aspire fading memory we propose to use exponential forgetting of the examples
over time. Therefore, we define the following update rule for the estimation of the
value ẑt using the previous value ẑt−1 and a new measurement z

ẑt = Kẑt−1 + (1−K)z where K =
∆t
√

0.5 (4.5)

gives the factor of how much previous information should be kept. In particular, it
determines that half the information is kept in the time interval ∆t.

The second change allows that just the time is important and not the sample itself.
Furthermore, it limits the effect of label noise. Each new incoming sample (xt, yt)
for the first selector is initialized with the importance λ0 = 1. This means if it is

4Adapted from H. Grabner, C. Leistner, and H. Bischof. Time Dependent On-line
Boosting for Robust Backgroundmodeling. In Proceedings Proceedings International

Conference on Computer Vision Theory and Applications, 2007. [32]
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well predictable its importance decreases by propagating through all the selectors
otherwise increases. Assuming label noise a single noisy example can get very high
importance and can change the entire model statistics rapidly. Therefore, we propose
to keep the importance of the samples at the end of the ensemble constant. We first
propagate the example through the set of selectors and obtain the value of λN
without doing an update. The actual update is done with the initial value set to
λ0 = 1

λN
which clearly results in keeping it at one at the last selector. This simple

modification ensures trusting the model more than the examples which means that
the system, inherently, has some kind of outlier detection implemented. Please note,
that this modification does not change the overall boosting process, it rather gives
the example a prior importance.

Furthermore, the fading memory limits the switching problem (mentioned in Sec-
tion 3.2.1), since old information fades aways. Additionally, we introduce a soft-
selector, in order to limit the hard switching effect within the selectors of the cost
of computational complexity. In contrast to taking the best weak classifier (i.e., the
one with the smallest error) for each selector it uses the information of all weak clas-
sifiers combined. Although every arbitrary classifier fusion rule might be applied,
we chose to use the simple sum-rule which in practice yields good results [59]. As a
result, all weak classifiers, the errors and therefore the importance weight λ as well
as the voting αi are changing continuously. Finally, the prediction of a selector is
now

hsel(x) = sign
( M∑
m=1

αihi

)
. (4.6)

4.4 Including Prior Knowledge5

The question we focus in this section, is how prior knowledge can be included into the
on-line learning process. This has the advantage that the on-line learning does not
have to start from scratch and hence, fewer examples are required to achieve good
performance. In other words, the on-line learning process adapts the knowledge
to the particular task. Assuming that the prior knowledge is given as an off-line
classifier, the goal is to transfer this knowledge to an on-line classifier, which can
then be improved.

We assume that a prior (off-line) classifier, which was built on a distribution P ′ :
X ′ × Y ′ different from the novel target distribution P : X × Y . Nevertheless, we
assume that both distributions are quite similar P ′ ∼ P . Thus, we can benefit from

5Adapted from P. Roth, H. Grabner, C. Leistner, M. Winter, and H. Bischof.
Interactive Learning a Person Detector: Fewer Clicks - Less Frustration.
In Proceedings Workshop of the Austrian Association for Pattern Recognition,
2008. [105]
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(a) knowledge transfer (b) direct retraining

Figure 4.3: Knowledge transfer: (a) a new on-line classifier is built using the infor-
mation, that is already captured by an off-line classifier; (b) proposed approach – an
off-line trained classifier is directly re-trained.

the prior classification (also denoted as “transfer” learning). However, the main
question is, which part of prior information can be re-used and how this should be
done.

4.4.1 Classifier Transfer

The simplest way to make use of prior knowledge is to transfer pre-learned knowledge
(prior) via labels to an on-line classifier (see Figure 4.3 (a)). Precisely, the on-
line classifier is updated with samples (x, ŷ) of the novel scene, where the labels
ŷ = Hoff (x) are provided by the off-line classifier.

More sophisticated ways of knowledge transfer may be applied. For instance, similar
to [113] we can transfer the information from an off-line classifier Hoff to an on-line
classifier Hon by applying Hoff as the first weak classifier. In fact, the succeeding
weak classifiers in the on-line ensemble compensate the errors of the prior off-line
classifier. More formally, the thus obtained combined classifier is a weighted sum of
the off-line and the on-line classifier:

H(x) = αoff (Hoff (x)− θoff ) +Hon(x). (4.7)

Since Hoff is interpreted as first weak classifier a threshold θoff is set according
to the response of the new distribution. Additionally, the weight αoff is calculated
using the standard boosting formulation with error êoff , which is the estimated error
for the off-line classifier on the new scene. Thus, αoff automatically determines the
importance of the off-line classifier for the novel distribution as part of the on-line
classifier. As a drawback, the complexity of the on-line classifier has to be large
if the off-line classifier has an error near 50% (i.e., the two distributions are very
“different”). This, however, yields to the common problem that many training
samples have to be provided again.
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4.4.2 Direct Re-training

To avoid the drawbacks of the previously discussed methods for knowledge transfer,
we propose to directly update the off-line trained classifier in an on-line manner (see
Figure 4.3 (b)). For that purpose, we have to ensure that all statistics, that are
necessary for on-line updating, are stored during the off-line training phase. This
can be done straightforward for all components:

Weak classifier: In order to build a weak hypothesis hn : X → {−1, 1} corre-
sponding to an image feature fn we apply a learning algorithm. Precisely, we
estimate the distributions P (y = 1|fn(x)) and P (y = −1|fn(x)) for positive
and negative samples, respectively. Assuming that positive and negative fea-
ture values follow Gaussian-distributions, we can calculate the mean and the
variance from all off-line samples. These parameters can then easily be ad-
justed during the on-line learning stage [32] to re-calculate hn(x) as described
in the previous section.

Errors: The error of the weak classifier is used to select the best weak classifier
within a selector to calculate the voting weight α and to update the importance
λ. In the off-line case the error depends on the weights wi of the training
samples, that were classified correctly and incorrectly. These values have to
be saved as λcorr and λwrong, which can then be updated by the importance λ
in the on-line case. Thus, by using Equation 3.6 the estimated error can be
re-calculated.

These modifications of the off-line learning process allow us to on-line re-train an
off-line trained classifier later on. Thus, we can retain the information captured
during the off-line training and we can still adapt an existing classifier to a new
specific scene. The drawback of these approach is that the off-line classifiers have to
be trained in that way, i.e., the training data has to be given. By using a classifier
transfer strategy (as briefly discussed in the last section) one can make use of any
a-priory given classifier.

4.5 Other Extensions and Applications

The following extensions were not developed by myself or our team. They are
listed here for completeness. Note, only those papers are mentioned, that extend or
directly make use of the approach and not only cite it6 as related work.

6The original paper, H. Grabner, and H. Bischof. On-line Boosting and Vision.
In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 260-268, 2006. [30], has 32 cites on Google Scholar up to now (August 18, 2008).
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Real On-line Boosting: Xj et al. [141] replace the discrete AdaBoost with the
real valued version [114] and claim a faster convergence. They demonstrate
their algorithm on the task of visual tracking. Furthermore, a particle filter
and an extended set of features are used in the application.

Asymmetric On-line Boosting: Pham et al. [97] extend the approach in order
to cope better with highly asymmetric problems like it was done by Viola and
Jones [131] in the off-line case. Asymmetric learning is important, especially
for learning object detectors. They show an increase in accuracy (0-10%) as
well as in speed compared to our original method.

Gradient Feature Selection: Liu and Tu [77] propose a gradient feature selection
mechanism for on-line boosting. The approach iteratively updates the features
(orientation histograms in their implementation, but not limited to it) in a
gradient decent manner. Hence, they present an unified objective function
for feature selection and weak classifier updating. It seems that this method
naturally avoids the switching of the features within one selector. Experiments
on person detection and tracking applications demonstrate the effectiveness of
their approach.

Boosting Adaptive Linear Weak Classifier: Parag et al. [94] propose to mod-
ify the form of the weak classifiers. The classifier adapt themselves to conform
with the changes over time. Their proposed method modifies the internal pa-
rameters of the base learners for the final classifier to blend with the change.
They apply their algorithm for visual tracking. This is related to our work
using time dependent on-line boosting (see Section 4.3).

Cascade Structure and Extended Application: Wu and Nevatia [139] build
on our ideas and use their extended approach to improve part-based object
detectors. In fact, they make use of other features and improve noise ro-
bustness. Furthermore, they propose to run a cascade like structure to speed
up the evaluation process. This is strongly related to our work using Wald’s
sequential decision theory (see Section 4.2).

Tracking: Woddy et al. [137] extend our tracking approach by a local generative
appearance model. The main contribution is the use of a generative model
to guide the on-line feature selection progress to regions of an image which
maintain a valid appearance and thus, they improved robustness to occlusions.

Tracking: Grabner et al. [43] integrate ensemble classifiers in optical-flow based
tracking. On-line Boosting for Feature Selection is used in order to adapt the
voting-weights of the weak classifiers ensemble, which corresponds to simple
gray pixel differences. For the tracking step an affine motion model is proposed.
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Part II

The Role of Supervision





In the first part of this thesis we proposed the On-line Boosting for Feature Selection
algorithm. The algorithm works on labeled samples, i.e., in a supervised manner.
However, for many tasks and applications, especially in computer vision, the labels
are not known. Since our learning algorithm cannot directly deal with these unla-
beled examples, we have to first provide a label. This is done by a “teacher”, i.e.,
the supervision which is the main focus of this second part. Since the sample is now
labeled, we can perform an update of the classifier (see Figure 5.1).

(a) unlabeled examples (b) labeling via a “teacher” (c) on-line update

Figure 5.1: In order to update the current classifier Ht−1 with an unlabeled example
xt(a), a “teacher” is used to label it (b). Afterwards a supervised on-line learning
algorithm can be used to update the classifier (c).
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Chapter 5

The Supervision

In this chapter we briefly review how unlabeled data can be included in off-line
learning and that it indeed can increase performance. Afterwards, assuming a su-
pervised learning algorithm is given, we show different ways of doing this for the
on-line setting. This sets the frame for the other chapters in this part, where the
different approaches are shown on particular applications.

5.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 On-line Learning via a Teacher . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Semi-Supervised Learning

In general, machine learning methods can divided into the following groups, de-
pendent on how the data or the feedback to the learner is provided. In Supervised
Learning a training sample (x, y) consists of the feature x and the corresponding
(given) label y. In Unsupervised learning or Clustering no label is provided and thus
the learning algorithm is looking for interesting structures in the data, i.e., group
similar samples together. In Reinforcement Learning a reward (not the label itself)
is given to the learning algorithm. The rewards depends on how good the learner
has selected its action. Semi-supervised learning is supervised learning, where ad-
ditionally unlabeled data is given. In the semi-supervised learning framework, the
main question is:
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(a) supervised (b) semi-supervised

Figure 5.2: In supervised learning for all samples its label is provided (a), whereas
in semi-supervised learning only for a few samples the target value is given (b). The
unlabeled data can help to improve classification results, e.g., by enforcing that the
decision border is in a low density region.

How should the unlabeled data be taken into account?

A simple example, illustrated in Figure 5.2, shows that one can indeed benefit from
unlabeled data. In off-line learning quite a variety of different methods exists, where
each of them make certain assumptions (see [145] for a good overview of existing
methods).

Co-training [10] assumes that multiple classifiers are trained over multiple feature
views of the same labeled examples. Graph-based, semi-supervised methods assume
that labeled and unlabeled data is connected by a graph. The edges encode the
similarity (distance) between the examples. Similar examples should have the same
label. In kernel-based methods (e.g., transductive support vector machines) also the
margin of unlabeled examples is taken into account, i.e., they serve as a smoothness
or regularization term in order to emphasize decision boundaries which lie in a low
density region. Generative semi-supervised methods assumes a model for the data
distribution. By using the Expectation Maximization algorithm the unlabeled data
gets assigned (pseudo) labels and afterwards the model is updated. It is important
to mention that unlabeled data not always improves the performance. Especially,
this is the case when the underlying assumptions are invalid, e.g., as shown by the
following example [145]:

Quite a few semi-supervised learning methods assume that the decision bound-
ary should avoid regions with high density. If the data is generated from two
heavily overlapping Gaussian-distributions, the decision boundary would go
right through the densest region, and these methods would perform bad. The
art is to design methods which at least do not decrease their performance by
unlabeled data.
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5.2 On-line Learning via a Teacher

Including unlabeled data in on-line learning means to unsupervised improve a classi-
fier, which is randomly initialized, or pre-trained with some labeled data. Since our
learning algorithm (On-line Boosting for Feature Selection) is a supervised learning
algorithm, which cannot directly use unlabeled data the main questions are:

(i) When should an update be done?

(ii) With which label should the update be done?

(iii) What happens in the case of wrong updates?

In general, such adaptive approaches usually suffers from the drifting problem. A
small error can be accumulated more and more and the whole system can end in
a catastrophic state (i.e., regarding object detection, a classifier that was trained
using many incorrect updates would yield many false positives and/or the detection
rate would decrease). Grossberg [44] addresses this by the Stability versus Plasticity
Dilemma. That is, how can one design a learning system that is plastic enough
to learn new information and, at the same time, is stable enough to not forget old
important information, that it has already learned.

A closely related topic is concept drift [122, 127]. A Concept drift takes place when
the underlying structure of the data space or the underlying concept changes in
reality. The effectiveness of any incremental learning algorithm, is its ability to
capture the concept drift as the training proceeds. The following properties should
considered:

Stability: The prediction accuracy of the test set should not vary widely at every
incremental training step.

Improvement: There should be an improvement of the accuracy as the training
goes on and the learning algorithm sees more training examples. Issues like
convergence and dependency on the initial conditions have to be considered.

Recoverability: The learning method should be able to recover from its errors,
i.e., even if the performance drops at a certain learning step, the algorithm
should be capable of recovering back to the previous best performance.

5.2.1 Approaches

Summarizing, new unlabeled data has to be robustly included into an already built
model. More formally, at time t given a binary classifier Ht−1 and an unlabeled
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example xt. The classifier predicts a label yt ∈ {+1,−1} for xt which can further be
used by an “analyzer” to generate the label ŷt, which indeed is then used to update
the classifier.

(a) general approach

(b) self-learning (c) verifier (d) co-training

(e) fully supervised (f) fixed rules (g) fixed rules with adaptive
parameters

Figure 5.3: General approach for on-line updating a classifier H (a). Depending on
the design of the analyzer a wide range of methods can be obtained; from supervised
learning (e) (the analyzer is an oracle) to self-learning (b) where the analyzer is hot-
wired. In order to limit drifting, verifiers are used (c). A special case is co-learning (d)
where the labels are provided by another classifier. However, this approach has strong
assumptions. By using fixed update rules (f) the classifier response yt = Ht−1(xt) is
not taken into account at all for delivering the update. Thus, we have neither direct
nor indirect feedback. This is extended in (g) where only parameters are adjusted
with direct feedback.

Figure 5.3 depicts a few approaches. If no verification is given, as depicted in (b) this
is named self-learning. In a self-learning framework the current classifier evaluates an
input sample and predicts a label which is then directly used to update the classifier.
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Hence, the classifier teaches itself by its own predictions. In general, such methods
suffer from the drifting problem since there is no re-active process included. In (c)
the results obtained by the classifier are verified by a “sophisticated” analyzer and
if the obtained labels are confident the samples are used for updating the classifier.
Nair and Clark [83] proposed to use motion cues for this purpose. Roth et al. [108]
extended this idea and additionally applied a generative model for verification. In
contrast, Wu and Nevatia [139] used local parts of the object in order verify the
detections and to improve the detection results. When using another classifier as
verifier this is known as co-training [10, 69]. Two classifiers are trained in parallel
using different views of the data. The confident predicted labels are used to update
the other classifier, respectively (d). The main drawback is the assumption that the
two classifiers are statistically independent.

All of these approaches mentioned so far have a feedback from the classifier some-
how back to generate the label. Thus, if the label ŷ is wrong an update decreases
the classification performance and the classifier drifts away. There are two issues
involved:

(i) how many label noise is generated by the supervision, and

(ii) how robust is the classifier to tackle with that label noise.

Some approaches are more immune than others but the principle problem stays the
same. Hence, in the last row of Figure 5.3 no direct feedback of the classifier is
done. The knowledge of an expert is encoded into rules (e.g., an other classifier
teaches the on-line classifier). Thus, the labels are stable and “predictable”. Maybe
some internal parameters of the model will be adapted (g). Note, that this is in
the common understanding not an expert system. The expert knowledge is used to
train a classifier and thus, the classifier can generalize more and even outperform
the teacher on particular situations.

So far only label noise (wrong updates) is discussed. However, for computer vision
application another important issue has to be taken into account: label jitter, mean-
ing a positive sample, which is not well aligned. The two possible errors are shown
in Figure 5.4.

5.3 Outline

The applications for using Off-line Boosting for Feature Selection is more or less
object detection, since all the training data has to be given in advance. By using the
proposed On-line Boosting for Feature Selection algorithm other applications can be
explored as well. We demonstrate the multifariousness of the method on such diverse
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Figure 5.4: Green marked image patches corresponds to correct labeled positive and
negative samples. Whereas the red marked patches show the two possible errors: label
noise, i.e., a wrong label (dotted red) and label jitter, i.e., a misaligned positive patch
(solid red).

tasks as learning complex background models, visual tracking, and improving object
detectors. All approaches benefit significantly by the on-line training. However, the
proposed algorithm is a fully supervised two class learning algorithm. Therefore,
two issues have to be considered:

(i) each task has to be formulated as a binary classification problem, and

(ii) labels for the unlabeled samples have to be generated.

Both points are discussed for all applications. In particular, the following chapters
are organized with respect to the different methods of supervision. Beginning from
fully supervised learning over learning via verification to self-learning, and finally,
learning using fixed update rules. Advantages and disadvantages of the approaches
are discussed by means of computer vision applications.

Note: For motivation, related work, details and detailed experiments we kindly
refer the reader to the corresponding papers, which are listed at the beginning
of each section. Particularly, it should be mentioned, that the approaches are
at least comparable or even superior to state-of-the-art results although this
will not be illustrated in full detail.
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Fully Supervised

In this chapter, we consider fully supervised learning, i.e., we train a classifier in an
on-line manner but all labels are provided by an oracle (e.g., a human supervisor).
Thus, we can assume to have zero (or as low as possible) label noise. We show
this updated scheme by training an object detector in an interactive manner as
depicted in Figure 6.1. During learning the classifier should continuously improve
its performance, i.e., reducing the false positive rate and simultaneously increase
the detection rate.

Figure 6.1: In a fully supervised learning system, the updates are assumed to be
correct. Active Learning uses a feedback loop, i.e., the classifier “asks” for informative
examples, which are then labeled by an oracle.
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6.1 Learning an Object Detector1

We have developed an efficient framework for automatic car detection from large
aerial images. Cars appear as small objects, which vary in intensity and many
details, which are not visible. Moreover, the urban scene contains a complicated
background with variety of objects that look like cars such as windows, roofs of
buildings, and corners of streets. All these properties make it difficult to characterize
the features of a car and imposes challenges in recognizing cars from aerial images.
The detection of cars is useful for many reasons. One particular application of, our
group was further working on, is to improve ortho-photos [64]. The idea is to detect
the cars, remove them by an in-painting approach and then to use this to build the
ortho-photos. Even the 3D-reconstruction process can be improved.

We use On-line Boosting for Feature Selection together with an interactive training
framework to efficiently train and improve a car detector. After training, detection
is performed by applying the trained classifier exhaustively on the images. This
process delivers many overlapping detections, which are the probabilities of the
appearance of an object at a certain location. Therefore, a post processing stage is
needed to refine and combine these outputs. A car is considered to be detected if
the output confidence value of the classifier is above a threshold (i.e., zero). On the
one hand, the lower the threshold the more likely an object is detected as a car, on
the other hand the more likely a false positive occurs. For a higher threshold the
false positive rate decreases at the expense of the detections.

6.1.1 The Supervision

The training process is performed by iteratively labeling samples from the images
and updating parameters for the model. The labeled samples can be positive or
negative. In order to minimize the hand labeling effort we apply an active learning
strategy. The key idea is that the user has to label only examples, which are not
classified correctly by the current classifier. In fact, it has been shown in the active
learning community [95], that it is more effective to sample at the current estimate
of the decision boundary than the unknown true boundary. This is exactly achieved
by our approach. We first evaluate the current classifier on an image. The human
supervisor labels additionally “informative” samples, e.g., mark the wrongly labeled
examples (i.e., either a false detection or a missing one) and performs an update of

1Adapted from T. Nguyen, H. Grabner, B. Gruber, and H. Bischof. On-line
boosting for car detection from aerial images. In Proceedings IEEE International

Conference on Research, Innovation and Vision for the Future, 2007. [84] and
H. Grabner, T. Nguyen, B. Gruber, and H. Bischof. On-line boosting-based car
detection from arial images. ISPRS Journal of Photogrammetry & Remote Sensing,

63/3, 382-396, 2008. [34]
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the classifier. The new classifier is applied again on a new (or the same) image and
the process continues.

6.1.2 Selected Experiments

We start with a random classifier. The classifier is improved on-line after labeling
training samples by the user. During the training process we have labeled 1420
training samples. There are 410 positive samples, each sample contains a car, and
1010 negative samples, each contains diverse background image patches (for a few
examples see Figure 6.2).

(a) positive (b) negative

Figure 6.2: Examples of positive (a) and negative (b) labeled training samples during
the on-line training process.

This whole interactive training process takes approximately four hours2. The more
informative the samples are the faster the system can learn. Compared to other
object (car) detection systems, our system needs quite small number of image sam-
ples for training. The number of positive samples is much less than the number of
negative samples we need to train the system, which comes from the fact that the
variability of the background is much larger than the one of cars.

As we can see in Figure 6.3, after several iterations almost all cars, which have
rather clear appearance and fit to the (angle of the) detector, are detected. For
a quantitative evaluation, we use the common measurement for object detection
problem named recall-precision curve (RPC) [2]. The precision rate shows how
accurate we are at predicting the positive class. The recall rate shows how many of
the total positive we are able to identify. The F-measure is the harmonic mean that
can be considered as trade-off between recall and precision. Figure 6.3 (d) shows the
continuous improvement of the training classifier over time (i.e., number of labeled
training samples).

2Since we are training on-line, a classifier is available at each time. Thus, with fewer training
examples an acceptable result can be obtained after about 2 hours. The longer the training (i.e.,
the more samples are labeled) the better the performance will be.
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(a) (b) (c)

(d)

Figure 6.3: Learning process: Improvement of classifier performance - (a) original
subimage, (b) result after training the classifier with only one positive sample, (c)
after training with a few samples and (d) the final result without post-processing.

6.1.3 Discussion

Since labeling of samples in the training phase is an interactive process with visu-
alization, we can intuitively choose (label) the most informative and discriminative
sample at each update. This allows the parameters of the model to be updated
in a greedy manner with respect to minimizing the detection error, meaning that
the parameters of the model can be learned very fast. This process avoids labeling
redundant samples that do not contribute to the current decision boundary. Thus,
we employ a selective sampling technique, based on boosting, which dramatically
reduces the amount of human labor required for this task. A similar method has
been used by Abramson and Freund [1] motivated by the sentence: One of the most
labor intensive aspects of developing accurate visual object detectors using machine
learning is to gather sufficient amount of labeled examples.
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6.2 Summary

Since we scope with a fully supervised learning problem with no (or almost no)
label noise no drifting happens. Hence, on-line learning continuously increases the
detection rate and reducing the false positive rate over time. However, the ordering
of the examples have an significant effect of the performance and the learning time,
as the theory suggests, e.g., [95].
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Chapter 7

Verification

In this chapter, we use a verifier to provide labels for updating the classifier. This
is motivated twofolds. First, in order to minimize the hand labeling effort, e.g., we
want to limit the number of interactions of a human supervisor. Second, there exist
applications, where no interaction is possible at all, but a verification can be done
via other cues. The first three applications, shown in this chapter, are improving an
object detector over time, the fourth application is visual object tracking.
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7.1 Learning an Object Detector using 3D Infor-

mation1

Figure 7.1: The labels for updating the on-line classifier are verified by a 3D height
model. The robustness is achieved by using redundancy. In fact, overlapping images
are used to build such range image and a conservative update strategy.

For the task of object detection, we demonstrate how to reduce the hand labeling
effort considerably by 3D information. In particular, we show the training of an
efficient car detector for aerial images. On-line Boosting for Feature Selection is
used to incrementally improve the detection results. Initially, we train the classifier
with a single positive (car) example, randomly drawn from a fixed number of given
samples. When applying this detector to an image we obtain many false positive
detections. We use information from a stereo matcher to detect some of these false
positives (e.g., detected cars on a facade) and feed back this information to the
classifier as negative updates. This improves the detector considerably and thus
reduces the number of false positives. Similar results to hand labeling by iteratively
applying this strategy can be obtained.

7.1.1 The Supervision

The goal is to facilitate the problem of obtaining a large number of labeled samples
by using 3D information as a teacher (i.e., to provide labels for the on-line boosting
algorithm), depicted in Figure 7.1.

After initialization with a single positive sample the iterative training process is
started. The current classifier is evaluated on a randomly chosen training image.

1Adapted from S. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer. A
3D teacher for car detection in aerial images. In Proceedings ICCV Workshop on

3D Representation for Recognition (3dRR-07), 2007. [60]
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(a) (b) (c)

Figure 7.2: A small part of an areal image with all detections superimposed (a).
After verification using an range image from 3D reconstruction with a radiometric
resolution of 16 bit (b), only the overlayed detections (c) are verified.

This classifier provides a set of locations, where it detects cars in the image. Only
a subset of them are correct detections; the others are false positives. We aim
to identify these false positives robustly and use them as negative updates for the
classifier. The verification is performed on the according 3D range data of the
aerial image. We use the simple but powerful and robust assumption that a car
has to be located on similar height values in the currently visited detection window.
Therefore, we analyze the height data in this enlarged patch window at the location
of a detection and fit a plane to these values. From the robust estimate of the plane
for the range image patch, we verify the detection on the basis of its slope. If the
slope of this plane above a certain threshold, we consider this patch as negative
update.

After that, the classifier is evaluated on the positive samples and updated with
the worst performing one, if it is not detected as car. This autonomous process is
repeated until a stopping criterion is fulfilled. In contrast to manual training we can
train a classifier without any human interaction apart from the construction of the
set of positive samples. Comparing our learning curve to the results given in [34, 84]
(Section 6.1), we obtain a similar performance in a fractional amount of time.

7.1.2 Discussion

The approach is quite similar to just bootstrapping continuously from the range
image negative samples. However, we benefiting from active learning and decrease
training time. Note, if we consider a false positive as a correct detection, this does
not perturb the on-line learning process. We only update false detections, where
we are confident that they do not correspond to cars. In Figure 7.3 subsets of the
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positive and negative samples that are used for updating are shown.

(a) positive (b) negative

Figure 7.3: Examples of positive (a) and negative (b) samples used for updating
the classifier. The positive samples are hand labeled and given in advance, while the
negative samples are generated autonomously.

As can be seen the negative ones correspond to those, which are on facades (i.e.,
have a large different in the height values). Nevertheless, sometimes cars appear
in the set of negative updates. Note, this label noise only occurs as false negatives
since we use a fixed set of positive images. Unfortunately, the number (variance)
of positive images is constant. At the moment we cannot robustly generate new
positive updates from the range image. Thus, we evaluate the classifier on all hand
labeled positive examples in each iteration of the learning process. To avoid drifting,
we perform a positive update of the classifier, if a sample is not correctly classified.
This ensures that we train a car-detector and allows to recover from wrong updates.

The approach can be further extended by including more cues, e.g., Pacher et al. [93]
make use of an extracted street layer in order to reduce the false positive rate.
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7.2 Learning an Object Detector using a Multi-

camera System2

Figure 7.4: The detections of the on-line classifier are verified by all other classifiers,
corresponding to cameras looking at the same scene. Since the system is running for
a long period of time, only very confident decisions are used in order to update the
model.

We make use of both, verification using redundancy and verification using geometry,
which brings us to a multi camera system. The overall camera network is depicted
in Figure 7.5 (a). We have a setup with n partly overlapping cameras, each of
them observing the same 3D scene. In general, the objects-of-interest can move
in the world coordinate system (xw, yw, zw). We can assume that the objects-of-
interest (i.e., the persons) are moving in a common ground-plane. However, having
overlapping camera views the local image coordinate system (xi, yi) can be mapped
onto each other by using a homography based on an identified point in the ground-
plane. In addition, for each camera an estimation of the ground-plane is required.

Similarly to Khan and Shah [58], we use homography information to map one view
onto an other. It is well known (see, e.g., [47]) that points on a plane from two
different views are related by a planar homography. The principle is depicted in
Figure 7.5 (b). Hence, the plane induces a homography H between the two views,
where the homography H maps points xi from the first view to points xj in the
second view:

xj = Hxi . (7.1)

In particular, we estimate the homography by selecting corresponding points manu-
ally. In fact, for the current setups we estimated the ground-plane manually by se-
lecting at least four corresponding points in each image, but to have an autonomous

2Adapted from C. Leistner, P. Roth, H. Grabner, H. Bischof, A. Starzacher,
and B. Rinner. Visual On-line Learning in Distributed Camera Networks. In

Proceedings International Conference on Distributed Smart Cameras, 2008. [66]
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system an unsupervised autonomous approach (e.g., [96]) might be applied as well.

(a) overview (b) homography induced by a plane

Figure 7.5: System overview of our proposed approach (a). Multiple cameras observe
a partly overlapping scene and collaborate during update phase. The cameras can
exchange information because the scene is calibrated which can be done calculating a
homography between each cameras (b).

Once we have calibrated the scene we can start co-training [10, 69]. In fact, in our
approach the different views on the data is realized by different camera views, i.e.,
we can verify if a detection in one view was also reported in a different one.

7.2.1 The Supervision

In order to start the training process, we first train a general prior HP (x) by off-
line boosting. Thus, a classifier is trained using a set of positive X+ and negative
labeled samples X− [130]. Such a classifier is trained emphasizing on a high recall
rate rather than on a high precision and can therefore be applied on all different
views. Then, the thus obtained classifier HP is cloned and used as an initial classifier
for all camera views. Please note, even exactly the same classifier is applied for that
purpose due to the different camera positions we get the independent observations
required for co-training. Since it has been shown [106] (see Section 4.4) that off-line
classifiers can be easily re-trained using on-line methods (i.e., all acquired statistics
are interpreted as if they have been estimated on-line) these cloned classifiers can
be re-trained on-line and adapted to a specific camera later on.

In particular, we propose the following re-training approach for updating n cam-
eras, where we verify or falsify the obtained detections, in order to improve the
corresponding classifiers:

Verification If all responses of the other (corresponding) classifiers j = 1, . . . , n
are also positive, the example is verified and added to the pool of positive
examples: X+ ∪ x.
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Falsification If all responses of the other classifiers are negative, the example is
classified as a false positive. Thus, the classifier Hi is updated immediately
with x as a negative example. After each negative update the pool of positive
samples X+ is checked if it is still consistent; otherwise a positive update with
the corresponding sample is performed.

In all other cases we do not perform an update. With this very conservative and
simple update strategy the arising label noise can be minimized and thus the detec-
tions keep stable over time. Since we are continuously learning over time these few
updates are sufficient to adapt to the specific scene. Note, if Hi(x) has a negative
response nothing happens. However, the positive samples are collected during the
verification step and the local pool of scene-specific samples X increases.

7.2.2 Selected Experiments

In the experimental setup we assume static cameras with partly overlapping views.
For all cameras sharing a view-point area, we estimate the ground-plane homog-
raphy. We evaluated our approach on the PETS 2006 3 data set. It can be seen,
that although only a small number of frames were processed the precision was sig-
nificantly improved while the recall rate stays at the same level. The improving
classifier performance over time is illustrated in Figure 7.6.

t = 0 t = 20 t = 50
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Figure 7.6: Improvement over the co-training iterations on the PETS 2006 indoor
scene. After t = 50 iterations, the results stayed at a constant performance level.

3http://www.pets2006.net, (February 13, 2008)
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7.2.3 Discussion

Due to homography projection and label jitter, alignment errors are introduced even
when the ground plane is perfectly calibrated. Hence, misaligned samples may be
used as updates, which may ends in corrupted classifiers. This shows, the importance
of well aligned samples.

An further problem occurs, if he object is partially occluded by other objects or per-
sons. Hence, the other camera(s), which are used to verify/falsify the detection may
correctly detects the object this might yield to wrong updates. More sophisticated
methods, like a global occurrence-map [23] would limit these problems. Also other
cues, like motion or shape information can be easily included in order to achieve
more robust updates, i.e., decrease label noise and label jitter by doing less (only
very secure and well aligned) updates. Some of this approaches will be mentioned
in the in the next section, within the Conservative Learning framework.
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7.3 Learning an Object Detector using a Recon-

structive Model4

Figure 7.7: The detections of the discriminative on-line classifier are verified by
another classifier, which, in fact corresponds to a reconstructive model. Since the
system is running over a long period of time, on-line very confident decisions are used
in order to update the model.

On-line learning in order to improve detection results has been investigated in the
past, e.g., [69, 83]. The basic idea is to start with a very simple object detection
system and to exploit a huge amount of unlabeled video data by being very con-
servative in selecting the training examples. In fact, we start with a simple moving
object classifier and proceed with incremental PCA (on shape and appearance) as
a reconstructive classifier. The key idea is to use reconstructive and discriminative
classifiers in an iterative co-training fashion to arrive at increasingly better object
detectors. We demonstrate the framework on a surveillance task, where we learn
person detectors with minimal or even without hand labeling.

Discriminative representations (as it is achieved by the on-line boosting) are com-
pact, task dependent, efficient, and effective, but usually not very robust. On the
other hand, reconstructive representations are usually less efficient and less effective,
but more general and robust. The ultimate goal is to combine these two representa-
tions to achieve the best of both worlds, which would lead to efficient and effective,
while still general and robust continuous learning techniques.

4Adapted from P. Roth, H. Grabner, D. Skocaj, H. Bischof, and A. Leonardis.
Conservative visual learning for object detection with minimal hand labeling
effort. In Proceedings German Association for Pattern Recognition (DAGM),

pages 293300, 2005. [107] and P. Roth, H. Grabner, D. Skocaj, H. Bischof, and
A. Leonardis. On-line conservative learning for person detection. In Proceeding

IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and

Surveillance, 2005. [108]. Additionally, the interested reader is pointed to the PhD-
Thesis [105] from P. Roth about more details.
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7.3.1 The Supervision

We use a reconstructive model, which assures robustness and serves for verification.
In fact, we use a PCA-based subspace representation as a reconstructive model. This
low-dimensional representation captures the essential reconstructive characteristics
by exploiting the redundancy in the visual data. As such, it enables “hallucinations”
and comparison of the visual input with the stored model [67]. Having this model,
each image can be checked whether it is consistent with the current model or not.
When a false detection occurs, the reconstruction error is significantly larger (i.e.,
the original image and its reconstruction differ significantly), thus the image gets
discarded. We thus assure that the discriminative learner gets most of the time
the clean data. If the reconstruction error for both, appearance and shape, is very
low there is a positive update of the classifier; if the reconstruction error is big and
some motion restrictions are fulfilled there is a negative update. Both, positive and
negative updates are required.

In this way the inconsistent data can be rejected and the discriminative model can
be trained from “clear” data only. The whole process run in an incremental manner,
feeding the learner continuously, as new data arrives.

7.3.2 Selected Experiments

For evaluation purposes we have generated a challenging test set of 300 frames
(containing groups of persons, persons partially occluding each other and persons
walking in different directions) and a corresponding ground truth. Figure 7.8 shows
the detections by three different on-line classifiers (initial, after 300 and after 1200
training frames) on the test sequence. Since this initial classifier is worse there is a
greater number of false positives in the beginning (a) that can be completely removed
by on-line training, as can be seen in (b) and (c). Detailed performance curves are
depicted in subfigure (d). Some more examples of persons correctly detected by the
final classifier are depicted in Figure 7.9 (first row).

The proposed framework is quite general (i.e., it can be used to learn completely
different objects and can be extended in several ways, e.g., Figure 7.9 (second row)
demonstrates the same algorithm applied to cars.

7.3.3 Discussion

The classifier is only updated if we are very confident, in particular all patches are
verified by motion and PCA (appearance and shape). Furthermore, the updates
are well aligned (no label jitter) mainly due to the reconstructive shape model. For
examples of positive and negative updates see Figure 7.10.
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(a) 0 (b) 300 (c) 1200

(d)

Figure 7.8: Improving detection performance over time (updates).

Figure 7.9: Detections by the final classifiers.
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(a) positive (b) negative (c) uncertain

Figure 7.10: Examples of positive (a) and negative (b) samples used for updating
the classifier. Due to the conservative approach no updates are done with uncertain
samples (c).

The conservative approach assures, that non-relevant (corrupted or inexact) data
is included into the model. However, if once a wrong update is done the approach
drifts. Most of the time, this error is immediately corrected by the next updates.
Thus, the classifier has the ability to recover from wrong updates, as can be seen in
Figure 7.11. More modules, operating on different modalities (e.g., tracking, color,
etc.) will further increase the robustness and generality of the system.

(a) t− 2 (b) t− 1 (c) t

Figure 7.11: After achieving stable results marked by the bounding boxes (a) a
wrong update causes failures, i.e., many false positives (b). However, the model has
the ability to recover (c) by the next few updates (red: negative updates; green:
positive updates; white: uncertain detection).
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7.4 Tracking by Detection5

Figure 7.12: Tacking loop: Learning a classifier for feature representation allows to
simplify the problem of matching keypoints since the corresponding point has just to
be distinguished from to currently detected ones. The usage of an on-line classifier
allows to build this representation during tracking by collecting samples over time.

We treat tracking as a matching problem of detected keypoints between successive
frames. The description of the keypoints are learned using classifiers. Contrary
to existing approaches, we are able to start tracking of the object from scratch
requiring no off-line training phase before tracking. The tracker is initialized by a
region of interest in the first frame. Keypoints lying with this region are considered
as object keypoints, all others as background keypoints. The task is to robustly re-
detect the object by its object keypoints. Therefore, the descriptions of the object
keypoints are learned. In fact, we propose to learn distance functions in the space
of keypoints d : K × K → [0, 1]. Similar to [49], boosting can be used to learn a
classifier which is then equivalent to learning a distance function. In other words
we implicitly define a multiclass classification problem in the original vector space
K by generating a binary partition of the data in the product space K × K. We
choose the simple one vs. all partition, i.e., each keypoint can be distinguished
from all the other points. In contrast to methods using a fixed metric for keypoint
description (e.g., SIFT [78]), discriminative learning of keypoint descriptions allows
to incorporate scene information and therefore simplifies the tracking problem to a

5Adapted from M. Grabner, H. Grabner, and H. Bischof. Learning features
for tracking. In Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR),2007 [41]. Additionally, the interested reader is pointed to the PhD-
Thesis [39] from M. Grabner about more details.



92 Chapter 7

classification problem among the currently detected scene keypoints, i.e., we only
have to discriminate the current object keypoints from the ones detected in the
background.

During tracking we want to use the most reliable features of the object. Therefore,
we introduce a mechanism which on-line determines a ranking of the currently used
features by estimating for each classifier the probability for a match in the next
frame. Since we have independent classifiers for local features, this measure can be
used for discarding bad features and replacing them with new ones which probably
might be better suited for matching.

7.4.1 The Supervision

The tracking loop is depicted in Figure 7.12. Matches are obtained by applying the
classifiers on all detected keypoints. For verification of them, which is important for
obtaining correct labels for updating, the homography between successive frames
is estimated using RANSAC [47]. Thus, in fact, the geometry serves as verifier.
Establishing a homography assumes that the tracked object is planar or the depth
discontinuities are small compared to the distance to the camera. Thus, we achieve
a subset of correct matches M c ⊆ M verified by the homography. In case that the
number of inliers exceeds a threshold, we assume to have correctly determined the
homography and successfully tracked the object. Therefore, for each classifier we can
compute its corresponding patch in the actual frame, which is then used for making
a positive update of the classifier Hi. For negative updates we again choose patches
extracted from any other keypoint k ∈ Kt. If we cannot establish the homography of
the object between two consecutive frames we perform no updates to the classifiers
and no detection is achieved.

7.4.2 Selected Experiments

On-line learning of local features allows us to simplify the classification problem in
an elegant way. On the one hand an on-line classifier allows us to exploit infor-
mation obtained over time by applying correct matches as positive updates to the
corresponding classifier. In addition, discriminative classifiers allow to incorporate
scene information by considering background keypoints as negative samples. An ex-
ample is depicted in Figure 7.13. After changing the pose of the object, the number
of matches decreases. Classifiers are exchanged as well as updated and the tracker
stabilizes again.

Different objects have been chosen in order to illustrate the tracking performance,
shown in Figure 7.14. The first row shows the property of local approaches of being
invariant to occlusions. In addition, illumination changes and affine transformations
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(a) frame 1 (b) frame 50 (c) frame 100

Figure 7.13: A pose change of the target object causes a decrease of the number of
matches. If the appearance change of the object is not too large such that the object
does not get lost, the mechanism for exchanging local features allows to find reliable
features for matching again.

of the target object do not confuse the tracker. It can even handle large scale and
pose changes of the target object as illustrated in row 2 due to the feature exchange
property. Fast movement of the target object can cause a loss of the target object,
as shown in the next sequences. However, once the appearance is similar to the one
before it has been lost, the tracker can re-detect the object and continue tracking.
Row 5 illustrates that even targets with a certain amount of changing content can be
successfully tracked. In this case we have simulated a changing texture by tracking a
monitor that is playing a video. The last sequence shows the benefit of discriminative
feature learning. A textured target is tracked even though the same texture is present
in the background.

7.4.3 Discussion

The supervision is provided through a robust geometrical verifier, i.e., the keypoints
are updated after the robust RANSAC verification. However, if the object is oc-
cluded for a certain time (and due to the feature exchange), keypoints found on
the occluding object can start dominating the tracking. Hence, the tracker focuses
on the wrong object (similar as it is shown in Section 8.1.4). In the non occluding
case, drifting mainly occurs if the homography can not estimated properly. This
is the case if too few keypoints are found on the object or if they are not well dis-
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]

Figure 7.14: Sample sequences.

tributed among the object. Even a slightly incorrect estimated homography can
yield to confusions, i.e., background keypoints become object keypoints or vice a
verse. Furthermore, new keypoints at the boundary can be wrongly assigned to
either the set of object or background keypoints. This is shown in Figure 7.15. By
using some simple heuristics the effect can be limited. However, fast appearance
changes can only be handled if the number of inliers is allowed to be quite small
(i.e., the parameters of RANSAC are set soft). In general, there is a trade-off of
losing the object or continuously tracking it with the possibility to drift. Since in
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(a) (b) (c)

Figure 7.15: Drifting of the tracker since object keypoints and background keypoints
where swapped during the RANSAC verification step (b). Once the homography is
wrongly estimated the updates and thus the tracking results stay wrong (c).

the first case no updates are done, tracking may continue if the object has returned
to its former appearance.

7.5 Summary

In this chapter, we present a method for dealing with unlabeled data using a su-
pervised learning algorithm. In fact, this is done with the help of other accessible
information. This informations is used to verify or falsify the decision of the classi-
fier before the sample may is used for an update. A couple of possible verifiers are
shown on different computer vision applications. In fact, we used verifications via
redundancy, verifications via other learning algorithms, and verification via geomet-
rical constrains. Of course, one can think of many more possibilities, e.g., motion,
symmetry, etc., or combinations of them. Further, even non visual verification may
be used, e.g., via a touch-sensor on a robot. The underlying principle is to reduce
the label noise by independent information. Since, in many applications a big (unla-
beled) dataset (e.g., a video stream) is available, one can be very conservative, just
allowing very “secure” updates. As a side remark, geometric constrains are used
since a long time in computer vision, e.g., in order to establish correspondences in
images by RANSAC [47].
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Chapter 8

Self-learning

In this chapter, we consider self-learning, i.e., the classifier predicts the labels and
directly performs an update with its own predictions. Due to this direct feedback
the classifier is highly susceptible to drift, e.g., achieve self-fulfilling prophecies.
However, on controlled, well defined tasks, or for a short period of time, impressive
results can be achieved. We show this approach on two examples, the first on object
tracking and the second on background modeling.
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8.1 Classifier-based Template Tracking1

Figure 8.1: Tacking loop: Given an initial position of the object in time t, the
classifier is evaluated at many possible positions in a surrounding search region in
frame t + 1. The achieved confidence map is analyzed in order to estimate the most
probable position and finally the tracker (classifier) is updated. The usage of an on-
line classifier allows to build this representation during tracking by collecting samples
over time and so the classifier focus on the local problem of distinguish the object
from its surrounding background.

Very recently tracking was approached using classification techniques such as sup-
port vector machines [4, 5, 136]. Similarly, we consider the tracking problem as
a binary classification problem between object and background. Most existing ap-
proaches construct a representation of the target object before the tracking task
starts and therefore utilize a fixed representation to handle appearance changes
during tracking. In addition, to the on-line adaption problem, recently many tech-
niques have addressed the idea of using information about the background in order
to increase the robustness of tracking. We are dealing with a simpler problem. We
want to train a classifier, which discriminates the current appearance of the object
from its surrounding background. Training (updating) the classifier is done in an
on-line manner. This allows to adapt the classifier while tracking the object. There-
fore, appearance changes of the object (e.g., out of plane rotations, illumination

1Adapted from H. Grabner, M. Grabner, and H. Bischof. Real-Time Tracking via
On-line Boosting. In Proceedings British Maschine Vision Conference, 2007 [31].
Additionally, the interested reader is pointed to the PhD-Thesis [39] from M. Grabner about more
details.
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changes) are handled quite naturally. Moreover, depending on the background the
algorithm selects the most discriminative features for tracking resulting in stable
tracking results. By using fast computable features the algorithm runs in real-time.

8.1.1 The Supervision

The principle of the tracking approach is depicted in Figure 8.1. Since we are
interested in tracking, we assume that the target object has already been detected.
This image region is assumed to be a positive image sample for the tracker. At the
same time negative examples are extracted by taking regions of the same size as
the target window from the surrounding background. These samples are used to
make several iterations of the on-line boosting algorithm in order to obtain a first
model, which is already stable. Note that these iterations are only necessary for
initialization of the tracker. The tracking step is based on the classical approach of
template tracking [46]. We evaluate the current classifier at a region of interest and
obtain for each position a confidence value. Note, as shown in the theoretical section,
boosting estimates the log-likelihood (Equation 2.3). We analyze this confidence
map and shift the target window to the new location of the maximum.

Once the object has been detected the classifier has to be updated in order to adjust
to possible changes in appearance of the target object and to become discriminative
to a different background. The current target region is used as a positive update
of the classifier while again the surrounding regions represent the negative samples.
As new frames arrive, the whole procedure is repeated.

8.1.2 Selected Experiments

Figure 8.2 illustrates the behavior of our proposed method. If the target object
changes its appearance or the surrounding background of the target becomes dif-
ferent, the tracker needs to update his features, which is reflected in oscillations of
the confidence maximum (see row 3) and a flattened confidence map (see row 2).
Movement of the tracking target is represented by a shifted peak in the confidence
map. In the last row of the figure the percentage of switches within the selectors are
plotted. The blue line corresponds to all selectors and the red line takes only the
first 10 selectors into account. As the object changes its appearance the represen-
tation has to adapt. Therefor, the features switch. As expected, the first selectors
are more stable and converge faster.

Results for different tracking object are shown in Figure 8.3. The approach can
cope very well with occlusions and background clutter. Moreover, even large pose
variations of the head (row 2) do not confuse the tracker showing that the tracker
adapts to novel appearances of the target object. Row 4 illustrates that only little
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(a) Frame 38 (b) Frame 70 (c) Frame 138 (d) Frame 263 (e) Frame 328

Figure 8.2: Tracking results on a sequence (row 1) containing a combination of
appearance changes (i.e., illumination, occlusion, movement, out of plane rotation).
The behavior of the proposed tracker is analyzed considering the confidence map (row
2), the maximum confidence value over time (row 3) and the percentage of exchanged
features (row 4).

texture of the object is sufficient for tracking. A glass, having almost no texture,
is tracked and again shows the reliability and adaptivity of the proposed tracker.
Row 5 demonstrates the behavior in case of multiple very similar target objects.
As can be seen, even though the objects significantly overlap the trackers get not
confused demonstrating that the classifiers have really learned to distinguish the
specific object from its background. The same argumentation can be used for the last
row, where a piece of texture is tracked first in front of a homogeneous background.
Afterwards, if we change the background to the same texture, features are chosen,
which still allows for successful tracking of the object. To summarize, the tracker
is able to handle all kinds of appearance variations of the target object and always
aims at finding the best discriminative features for discriminating the target object
and the background from the surrounding background.
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Figure 8.3: To illustrate the generality of the proposed method, sequences of four
different objects have been captured. The tracking results show that even objects
with almost no texture (see row 4) can be successfully tracked. Moreover the tracking
algorithm can cope with multiple initialized objects even if they have similar appear-
ance (see row 5). Due to the on-line selection of discriminative features, the tracker
can track the object (texture patch) within nearly the same background (see row 6).
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8.1.3 Speedup using On-line WaldBoost2

In order to speed up the tracking process we are using the on-line WaldBoost algo-
rithm (see Section 4.2) where the parameters were set to α = 0.02 and β = 0.

Figure 8.4 shows a challenging tracking sequence including appearance changes of
the object as well as object occlusions on a complex background. The second row
depicts the confidence maps of the classifier. Since we use no motion model (e.g.,
as used by [141]), a confidence map is computed by evaluating the classifier at all
positions within a local search region. The position of the object corresponds to
the maximum in the confidence map. The values equal to zero show the positions
rejected before reaching the end of the classifier sequence. These early decisions lead
to the speedup shown in Figure 8.5. The speedup is calculated as N/Ñ , where Ñ is
the number of weak classifiers used before the decision is reached and averaged over
the whole search region. If all values are equal to zero the object is considered to be
lost. If the object is “stable” in the scene, the speedup is continuously increasing,
since background patches can be discarded early. On average, we achieved a speedup
of a factor of 5 to 10 without suffering a loss in tracking quality, i.e., we never discard
the maximum peak of the confidence map and thus results are exactly the same as
in [31]. In general, the achieved speedup depends on dynamically changing problem
difficulty and how often the Wald statistics have to be reset (e.g., at frame 2706).
Further, higher values of α lead to more speedup but having the risk of losing the
object if it changes its appearance too fast. The achieved speedup (≥ 1) can be

(a) Frame 1 (b) Frame 400 (c) Frame 2000 (d) Frame 2759 (e) Frame 3659

Figure 8.4: Tracking of an object (1st row) and the classifier response map within
the search window (2nd row). Values equal to zero mean early rejection, i.e., saving
of the computation time.

2Adapted from H. Grabner, J. Sochman, H. Bischof, and J. Matas. Training
Sequential On-line Boosting Classifier for Visual Tracking. In Proceedings

International Conference on Pattern Recognition (ICPR), 2008. [38]



8.1. Classifier-based Template Tracking 103

used for instance for extending the search region to handle faster movements or to
include other degrees of freedom like scale.

Figure 8.5: Speed-up compared to the non-sequential on-line boosting approach [31].

8.1.4 Discussion

Due to the self-learning policy occlusions cannot be distinguish from appearance
changes. If occlusions are just short the model is not disturbed. The updates for
the illustrative tracking sequence from Figure 8.2 are depicted in Figure 8.6. Which
allows successfully tracking of the object under appearance changes.

(a) positive (b) negative

Figure 8.6: Examples of positive (a) and negative (b) samples used for updating the
classifier.

Of course, an overlap for a long duration can cause adaption to the foreground object
and finally leading to failures, as can be seen in Figure 8.7.

In general, drifting occurs in long term (noise) as well as by short term (fast move-
ments) tracking sequences. For further discussion the reader is pointed to Sec-
tion 10.2, where we briefly present an approach to limit these issues.
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(a) Frame 37 (b) Frame 118 (c) Frame 433 (d) Frame 642

(e) positive updates (f) confidences

Figure 8.7: Drifting of the tracker, since it can not distinguish between (allowed)
appearance changes and occlusions. Due to the wrong updates, the face tracker (a)
gets a hand tracker (b)-(d) and (successfully) tracks the hand. This behavior is re-
flected by the performed positive updates (e). Unfortunately, the tracker does not
notice that, as shown by the confidences (f), which does not significantly decrease
over the whole sequence.
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8.2 Classifier-based Background Model3

A basic task in surveillance applications is background subtraction. One needs a ro-
bust and flexible background model. Based on the idea of a block based background
model [48] (which contains also a good overview of related work), we propose a
classifier based background model. The basic idea is to partition the image in small
(overlapping) blocks, each block contains a classifier, which classifies the region as
foreground or background. The overall principle is depicted in Figure 8.8.

Figure 8.8: The background model is formed by a grid of regular aligned classifiers
with an overlap in each direction.

We define as background everything, that is statistical predictable in the image.
Therefore everything, that cannot be predicted is foreground. This definition allows
us to describe dynamic (multi modal) background (e.g., flashing light, moving leaves
in the wind, flag waves, etc.). A robust background model has to adapt to dynamic
backgrounds and must be sensitive to corresponding foreground objects. Therefore
on-line algorithms are required. In the other case, when the patch can be modeled an
update policy is used to update the model in order to take care of natural (allowed)
changes in the background (e.g. lightning changes).

The main idea is to learn if the underlying image patch is predictable using the
classifier. If so, this is considered as “allowed” background and otherwise it is
considered as unknown (therefore foreground), i.e., a region is labeled as foreground
if it cannot be modeled by the classifier. Thus, the obtained confidence of the
classifier is below a certain threshold f(x) < θeval, where f(x) is the real valued
confidence response of the strong classifier H(x).

Since, boosting is used to train the classifier, which is a discriminative learning
method, normally both positive and negative labeled samples are required in order

3Adapted from H. Grabner, P. Roth, M. Grabner, and H. Bischof. Autonomous
Learning a Robust Background Model for Change Detection. In Proceedings IEEE

International Workshop on Performance Evaluation of Tracking and Surveillance,

2006. [37]
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to learn a decision boundary. Contrary, the task of background modeling is a one
class classification problem, meaning only positive samples (the observed images)
are given. Therefore, for each feature the negative distribution is estimated directly
without learning (e.g., assuming each pixel is a random variable which is normal
distributed or by using statistics of natural images [53]). In fact, we model the
gray value of each pixel as uniformly distributed with mean 128 and variance 2562

12

(for an 8 bit image). Applying common statistics, the parameters of the negative
distribution µ− and σ− of Haar-like features can be easily computed.

8.2.1 The Supervision

For updating the classifiers we adopt the following very simple policy. We update a
classifier if its confidence response is within a certain interval:

θupdatelower < f(x) ≤ θupdateupper . (8.1)

Usually θupdatelower = θeval and the upper threshold is set to avoid over-fitting. In
addition, in the post-processing steps several regions (known objects) are excluded
from updating for a certain time.

First, in the initial period a separate classifier is built for each patch by considering
all frames as positive examples. Later on, the algorithm analyzes the image and
does positive updates according to a given policy. Depending on the design of the
policy a wide range of behaviors is possible (i.e., should an object be feed into the
background model and if, how fast). Also the confidence values around the actual
patch can influence the policy to build a stable spatial-temporal model.

8.2.2 Selected Experiments

An experimental example is shown in Figure 8.9 for a cluttered desk scenario. The
first row shows the input sequence overlapped with blue rectangles indicating clas-
sifiers, which are currently updated. Those classifiers that give a negative response,
and by definition these are foreground objects, are depicted in the second row.
Added, removed or shifted objects in the scene are detected very well. Note, that
during learning of this sequence the screen saver was active. Therefore, this dynamic
background has been correctly modeled as background by the classifiers. But, when
we wake up the computer the change is detected.
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Figure 8.9: Evaluation of the background model. Each thin blue rectangle in the
input image (first row) corresponds to classifiers, which are updated in order to learn
the “allowed” changes. The regions, which cannot be modeled by the learned classifiers
are related to the foreground (second row).

8.2.3 Discussion

The system has two phases: First, an initial learning stage where a separate classifier
is built for all image patches assuming that all input images are positive examples
(i.e., correspond to allowed background variations). Later on, in order to be adap-
tive to the scene, new input images are analyzed and the background model is
updated according to a given, yet not totally traceable, policy. Then, it ends up
with three different thresholds, which have to be hand-tuned as well as some higher
update policy, for instance, that neighboring patches are inhibited to be updated
for a certain time (yet another irreproducible variable) when the current patch is
considered as foreground. Further on, due to its analogy to self-learning which relies
on a direct feedback of its own predictions, the approach tends to drift and ends up
in not predictable states when running for a long time (e.g., 24 hours a day, 7 days
a week). This is shown in Figure 8.10. To sum up, the method shows high perfor-
mance potentials but is only tediously, if not impossible, to be applied in practice.
This work was therefore continued, see Section 9.1.

However, removing the update problem and applying the idea in an off-line learning
task the proposed classifier-based background model achieves very good results. In
fact, we applied it for defect detection, where a fixed set of aligned training images is
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(a) (b) (c)

Figure 8.10: When running for a relative short period of time excellent results (a) can
be obtained. However, when the system runs for a long time, many updates (marked
by blue rectangles) are performed. Thus, the classifier starts to model everything as
“allowed” foreground (parts of the finger in (c)). Unfortunately, the contrary happens
as well, i.e., the classifier might be too sensitive to changes and thus do not update
(is looked) (b, c).

given, assuming, that most of them contains no defects.4. Some results are depicted
in Figure 8.11.
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Figure 8.11: Defect detection using a classifier-grid. Each grid element corresponds
to a boosted classifier trained off-line only from positive samples.

8.3 Summary

Self-learning approaches, shown in this chapter, directly depends on its own predic-
tions. The robustness is only achieve over a certain time, as long as the labels are

4This was studied with an master thesis by Thomas Kenner [57].
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correctly predicted. Due to the direct feedback, the effect is in general not manage-
able and further on self-reinforcing. The only possibility to make it robust is that
the classifier itself is robust.
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Chapter 9

Fixed Updates

In this chapter, we consider updates which are delivered by fixed rules, i.e., the
unlabeled sample is first given to a “teacher” which labels it. this is motivated
in order to overcome or at least limit drifting, which usually happens when using
dynamic update strategies. If the fixed rules can capture the problem well, the
system will not drift. We show this approach on two applications, both with fixed,
jet simple, hand designed update rules. First, for learning a robust background
model, and second, we applied it for learning an pedestrian detector.
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9.1 Robust Classifier-based Background Model1

The classifier-based background model, described in Section 8.2, is effective for de-
scribing highly dynamic scenes. The main drawback is its update strategy. Due to
this dependency on its own predictions, the model performs quite well for a rela-
tively short period of time but finally tends to learn foreground objects very quickly
without offering any control on its temporal behavior. Furthermore, the cumber-
some update strategy is highly scene dependent and, therefore, has to be hand-tuned
every now and then. Therefore, we extend it by using an alternative version of the
on-line learning algorithm which is controlled via temporal aspects and is resistant
to outliers. In fact, we apply the time depended version of the On-line Boosting for
Feature Selection (see Section 4.3), where one can specify a time constant ∆t which
controls fading memory of the internal parameters.

9.1.1 The Supervision

In order to get rid of the self-learning update strategy, we propose a fixed yet simple
update strategy. Each classifier Hi with the corresponding patch xi,t incorporates
every new upcoming frame t as a positive example (xi,t,+1). For automatically
updating2 the parameter ∆t we choose a simple dynamic control system, taking the
following observation into account: The time constant should be large enough in
order to model dynamic behavior but still as small as possible in order to be highly
sensitive to small background changes. If observing a static scene then every move-
ment or change should be considered as foreground. On the other hand, observing a
dynamic behavior, e.g., leafs in the wind, this should be modeled, and therefore we
have to increase the time constant up to a limit where it is still possible to model
these dynamic backgrounds. Furthermore, we assume that the time constant should
move smoothly. For each individual on-line classifier having its own ∆t we use the
following estimator

∆tt = Ki∆tt−1 +Kp∆̂t where ∆̂t = 1− 0.5 (1 + f(x)) , (9.1)

where Ki ∈ [0 1] assumes the smoothness constraint and Kp > 0 is multiplied by

the current estimate ∆̂t, which is considered to be proportional to the confidence
of the patch x. As soon as the confidence changes dramatically, i.e., a totally
unknown intruder enters the scene, our control system tremendously increases ∆t,
which yields the implicit result that the harder the underlying scenario changes, the

1Adapted from H. Grabner, C. Leistner, and H. Bischof. Time Dependent On-line
Boosting for Robust Backgroundmodeling. In Proceedings International Conference

on Computer Vision Theory and Applications, 2007 [32]
2Please note, that of course one can also specify the time constant by hand in order to get a

predefined background model for a specific application.
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(a) input (b) confidences (c) threshold (d) time-constants

Figure 9.1: The first row depicts the test scene after t = 100 and the second row at
t = 251, respectively. The second column shows the obtain confidences. As we assume
the flickering monitor to be background, the confidences are quite high. In order to
achieve such results our control system autonomously sets the ∆t in the flickering area
higher than in the non-dynamic rest of the scene.

higher the controller sets ∆t and, thus, the longer it takes for a new object to “fade”
into the background. Yet, smooth changes result in only small changes of ∆t which
let the system adapt to small background changes, e.g., slightly changing lighting
conditions. This allows us to autonomously model different dynamic movements
and periods for each classifier patch without drifting into unpredictable states since
only ∆t and λ0 as model parameters are changed but not the label of the updates.

The confidence of the classifier corresponds to the likelihood that the example cor-
responds to the background. In fact, we robustly detect outliers and mark them as
unknown foreground objects.

9.1.2 Selected Experiments

For all of our experiments we use a classifier grid with a patch-size of 20× 20 with
an overlap of 75%. To compute the classifier we use only 15 selectors each using
a set of 30 weak classifiers. The thus obtained grid of detectors is evaluated and
updated whenever a new frame arises. In order to set the time constant ∆t for each
classifier we set Ki = 0.95 and Kp = 10.

Figure 9.1 shows the behavior of our proposed background model. The rows corre-
spond to two different times and the columns show the input image and correspond-
ing internal results, which are the achieved confidence map as well as the segmented
foreground object, which is a simple threshold on the confidence map, and, in ad-
dition, the estimated time constant for each grid element. The sequence is taken
from [126], which shows a sequence of a flickering screen. At the end a person enters
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and fully occludes the monitor. In the first row each patch is able to model the back-
ground quite well using the on-line learned classifier (high confidence). In the region
where the screen is located, the time-constant is automatically set to a higher value.
This allows the patches located around the screen to model the flickering while still
being able to detect the intruding object.

In [126], a test set for evaluating background subtraction methods was presented. It
consists of seven video sequences, each addressing a specific canonical background
subtraction problem. In the same paper, 10 different methods were compared using
the test set. We tested our method against this test set and achieved the results
shown in Figure 9.2. In addition to the segmentation, which is achieved by thresh-
olding the classifier output by zero we depict as well the confidence map. This map
profiles include more information which can be included in further analysis (e.g.,
more sophisticated methods such as a mean shift-based clustering can be applied).

9.1.3 Discussion

Our proposed background model is based on fixed and simple update rules, which
yield stable results over a long period of time. Finally, the period of time necessary
for modeling regular and periodical scene behaviors does not have to be hand-tuned
but autonomously adapts to the underlying problem. Because of the fixed update
strategy we avoid (limit) drifting. Using the temporal dependency together with the
weighting of λ0 we achieved significantly improved results over the method proposed
in Section 8.2, which uses a self-learning strategy.

Note, since using the fixed update rules and a fading memory, we are back to quite
old but common used approaches for background modeling, e.g., [121]. However, we
benefit from the discriminative learning power.
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Figure 9.2: Detection results of our method for the test sequences presented in [126].
The first column shows the initial frame of each sequence, second column the test frame
and the third column the hand segmented ground truth. In the last two columns
our results (the real valued confidence map, a binary segmentation achieved be zero
thresholding) are depicted. Note that the performance could be easily increased by
analyzing the confidences more closely.
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9.2 Grid-based Object Detection3

By using a state of the art person detector many false positives are returned and
persons are missed. Hence, there is still a long way to go in order to obtain a generic
detector with satisfactory performance. But do we really need a generic detector for
visual surveillance? Consider, that we have fixed mounted cameras looking always
at the same scene, which is a considerable simplification for the task of person
detection. Hence, we do not need to solve the generic person detection task, we just
need to solve it for that particular scene. Due to a simpler problem this yields also
to more compact and, hence, faster as well as less memory consuming classifiers.
That is the reason why people have started to look at approaches that can train
a person detector for a particular scenario on-line. By limiting the detection task
to a specific scene the task becomes easier and less training samples are required.
On the other hand on-line unsupervised learning methods tend to wrong updates,
which reduces the performance of the detector. The detector might start to drift
and would end in an unreliable state.

We proposed to combine background and appearance based models. Therefore,
we sub-divide the input images into small overlapping blocks and to train and to
maintain a person detector on-line for all of these patches. Since the task of each
detector is to detect a person in only one specific patch and at a specific time the
complexity of the person detection task is significantly reduced. Hence, we can
apply quite simple and fixed update rules for updating the classifiers. This keeps
the classifier stable and limits the drifting problem. This is an essential property for
practical applications which run for a long time (24 hours a day, 7 days a week).

9.2.1 The Supervision

On the one hand we have a classifier based background model and on the other hand
an appearance based object detector, both are formulated as binary classification
task. The idea is to combine these two methods to get an improved object detector
for the particular scene.

The main goal was to define an update strategy that does not suffer from the drifting
problem. The key idea is to reduce the complexity of the pedestrian detection
problem such that a very simple and fixed update strategy can be applied. In the
following we discuss the chosen update strategy for a single patch (one classifier Hi).
Since updates should be generated without a feedback of Hi,t−1 we make use of the
following (very simple) observations:

3Adapted from H. Grabner, P. Roth, and H. Bischof. Is Pedestrian Detection
Really a Hard Task? In Proceedings IEEE International Workshop on Performance

Evaluation of Tracking and Surveillance,2007. [36]
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Positive updates: Given a set of positive (hand) labeled examples X+. Then,
using (x,+1), x ∈ X+ to update the classifier is a correct positive update.
The set can by quite small; in the extremal case (as we will show in the
experiments) it contains only one positive sample. The only assumption is
that X+ is a representative set. Roughly speaking, each possible appearance
should be captured by this subset.

Negative updates: The probability that a person is present on patch xi is given by
P (xi = person) = #pi

∆t
, where #pi is the number of persons entirely present in

a particular patch within the time interval ∆t. Thus, the negative update with
the current patch (xi,t,−1) is correct most of the time (wrong with probability
P (xi = person)). The probability of a wrong update for this particular image
patch is indeed very low.

In fact, we maintain a small set (as small as one) of positives samples whereas the
negative samples are directly drawn from the image sequence. In the experiments
we compared the proposed method to state-of-the-art methods. Since we obtain
competitive detection results we showed that for a specific surveillance task even a
less sophisticated approach would yield comparable results.

By using these update rules we avoid the dependencies between the updates and the
current model. Since the positive updates are per definition always correct the only
remaining problem is that occasionally false negative updates may be carried out.
Hence, the applied on-line learning method (i) must cope with some (low) label noise,
and (ii) must have fading memory (forgetting), which exactly is achieved by the
time-depending version of On-line boosting for Feature Selection (see Section 4.3).

9.2.2 Selected Experiments

Based on the approximated size of a person and an estimated ground-plane, a grid
of detectors using an overlap-rate of 90% is initialized. To compute the grid-based
classifier we use only 10 selectors each using a set of 20 weak classifiers, which
reflects the simplicity of the task. The thus obtained grid of detectors is evaluated
and updated whenever a new frame arises. The set of positive samples was reduced
to a single image that was obtained by averaging of approximative 100 images of
persons.

We compare the proposed grid-based detector approach to other approaches by an-
alyzing the precision-recall curves (see Figure 9.3 (a)). For the grid-based detectors
the evaluation was performed on-line; all detection that are reported during the
evaluation/updates procedure are included directly into the statistics. For other
methods a pre-trained classifier was evaluated on the test sequence. The Dalal and
Triggs detector performs worst among the tested methods. This is not surprising
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(a) RPC
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Figure 9.3: RPC for the Toy Example test sequence (a) and confidence of a specific
grid-based detector over time (b) and the corresponding images (c)-(g).

since a generic detector does not include any scene information. In contrast, the
Conservative Learning [108] (see also Section 7.3) detector yields high recalls pro-
ducing only a small number of false positives in order to adapt to the particular
scene. But a similar performance can be obtained by applying our simple grid-
based approach. To avoid multiple detections non-maxima suppression was applied.
Detection results are depicted in Figure 9.4.

Additionally, we show how a single detector for a single block is evaluated. Therefore,
the response (confidence) of the classifier is plotted over time which is shown in
Figure 9.3 (b). It can be seen that the response is increased whenever a person or a
part of a person is present in the patch. A detection is reported if the confidence is
above some threshold which is usually set to zero. As can be seen from Figure 9.3
(c)-(g) only persons are detected.

9.2.3 Discussion

The complexity of the detection problem can be reduced such that a single detector
has only to distinguish between a single background patch and the appearance of
a person, which allows us to make use of fixed update rules. By combining both
approaches we finally get a pedestrian detection system that is stable even when
running over a long period of time. In fact, we represent the background with high
accuracy for each specific grid element and the positive samples provide a suitable
“threshold” for the decision. The more samples are used the better the performance
can be expected. Further, one can think of of modeling the positive distribution
off-line and just on-line estimate the negative one.
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Figure 9.4: Detection results of our proposed grid-based pedestrian detector on the
two sequences Caviar (first row) and PETS 2006 (second row).

9.3 Summary

Fixed update rules, shown in this chapter, are immune to drifting per definition,
since no direct feedback exists. The classifier is updated according to the decisions
of a “teacher”, e.g., via hand designed rules taken from an expert. However, the
classifier is still adaptive and so it can generalize better by focusing on the current
sub-problem. However, the open question is, how do come up with these rules and
how “good” they have to be in order to properly solve the problem. This is related
to co-learning [10], whereas one classifier is fixed. Thus, the assumption [6], that a
classifier (the teacher) should be “never confident but wrong” remains.
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Conclusion and Future Work

In this thesis, we proposed the novel On-line Boosting for Feature Selection algo-
rithm. The algorithm performs on-line feature selection using binary labeled sam-
ples. Its generality, suitability, and efficiency for computer vision was demonstrated
on various applications, e.g., tracking, continuously improving detectors as well as
background modeling. This was made possible since all applications can be (i) for-
mulated as binary classification problem and (ii) unlabeled data can be included
into the model by some sort of supervision. Extensive evaluations have been done,
whereas excellent results can be obtained. Even combinations are possible, like
detection, tracking and recognition [42] or detection, tracking and background mod-
eling [37]. The combined approaches benefit essentially from the fact that all tasks
can be formulated with the same algorithm (off-line and on-line boosting) and the
same features (which additionally can be shared and have to be calculated only
once).

However, for most application one has to tackle with unlabeled data. Since the algo-
rithm needs labels, these have to be generated somehow in order to make updates.
The second part of this thesis shows different strategies, which are nowadays, un-
fortunately, not clearly understood in detail. Summarizing, most of the approaches
focus on verification or self-learning. Verification methods seems powerfully if a lot
of data is available and thus it is feasible that only a few conservative updates are
made. However, if this is not the case (e.g., in fast changing environments) may
no updates will be performed at all. Hence, no adaption is possible. Self-learning
can be used, but it suffers extremely from the drifting problem. Drifting is avoided
per definition, using fixed update rules. However, these usually hand designed rules
have to be sufficient enough to cope with the problem.

In the following sections, we give an outlook and preliminary results of ongoing work
to continue the ideas described in this thesis. First, we briefly show how the on-line
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boosting algorithm can be made more robust to feature level noise. The second
section addresses label noise. We extend the algorithm in order to directly deal
with unlabeled data, i.e., we turn the supervision into the updating process of the
algorithm.

10.1 Robustness of the Classifier

Boosting is a discriminative method, which focuses on the hard examples to learn.
This is the nature of boosting, but it is also the reason why it is in the common
formulation very sensitive to noise. It achieves a hard margin [101] decision and
therefore overfits to the training samples, even when they are mislabeled. Therefore,
we need more robust models: Robust feature selection by combining (embedding)
generative information from the patches. If one has a classifier which is very robust
(can be learned under random noise) the label generation process can be very weak.
We investigated some effort in that direction [35], where we focus on feature level
noise. The results look promising, nevertheless, up to now only off-line learning is
considered. However, it seems straight forward to to it on-line as well.

10.2 On-line Semi-supervised Boosting1

The main idea is to formulate the on-line training in a semi-supervised manner. In
fact, labeled data serves as a prior and the unlabeled data is then used to update the
classifier. This allows to drift but limit it to a certain amount. In other words, the
prior classifier (the confidence of the prior classifier) tells the on-line classifier how it
can be adapted. It is essential to have a honest prior, i.e., it can be wrong but never
confident but wrong. The essential point is that the SemiBoosting theory tells one
how the prior should be included. As effect, we can directly include unlabeled data
and are beyond the point of 100% positive or negative updates. Only a few lines of
code have to be adapted in the algorithm. In the following we show the principle
behavior on the task of visual tacking. Comparing to Figure 1.5 from Section 3.4
we now yield the following Figure 10.1.

We illustrate details of our tracker on frontal faces. As prior classifier and for
initialization of the tracking process we took the default frontal face detector from
OpenCV Version 1.0 2, which delivers state-of-the-art results. This demonstrates
that we can use any prior in our method. The primary focus of the experiments

1Adapted from H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-line
Boosting for Robust Tracking. In Proceedings European Conference on Computer

Vision (ECCV), 2008. [33]
2http://sourceforge.net/projects/opencvlibrary/, (March 16, 2008)
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Figure 10.1: Detection and tracking in principle can be viewed as the same problem,
depending on how fast the classifier adapts to the current scene. On the one side a
general object detector (e.g., [130]) is located and on the other side a highly adaptive
tracker (e.g., [31]). Our approach is somewhere in between, benefiting from both
approaches: (i) be sufficiently adaptive to new appearance and lightning changes, and
the simplification of object vs. background and (ii) limit (avoid large) drifting by
keeping prior information from the object.

Figure 10.2: Tracking a face in an image sequence under various appearance changes
(i.e., occlusion, movement, out of plane rotation, etc.). The first row illustrates three
different types of update strategies for the tracker, i.e., (i) on-line boosting (cyan), (ii)
prior classifier (red), and (iii) a heuristic combination of (i) and (ii) using the sum-rule,
i.e., 0.5(HP (x) +H(x)) (green). The second row shows the SemiBoost tracker.

is to compare the SemiBoost tracker to other update strategies. As can be seen
from Figure 10.2, our approach (second row) significantly outperforms the on-line
booster, the prior classifier and an heuristic combination of prior and on-line booster
(first row). It shows that we can adapt to appearance changes, whereas the frontal
face detector of OpenCV fails on side looking faces.

In Figure 10.3, we compare our method to the former on-line boosting approach on
various tracking scenarios. First, as can be seen in row 1, we are still able to handle
challenging appearance changes of the object. Our approach performs similar to the
former on-line tracker up to the third subfigure in row 2, where both get lost. Yet,
in contrast to the previous proposed method, as soon as the object becomes visible
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again it is re-detected by the SemiBoost tracker (using the a priori knowledge) while
the on-line boosted tracker meanwhile has adapted itself to a completely different
region which it finally tries to track. Row 3 of Figure 10.3 depicts tracking during
a fast movement. Due to some incorrect updates and the self-learning strategy of
the on-line boosting tracker it may happens that the tracker loses the target and
focuses on another part while the semi-supervised tracker is able to re-detect the
object. An extremal case is shown in row 4, where we remove the object from the
scene. If the object is present again and thanks to the fixed prior our proposed
approach has not forgotten the appearance as it is the case for the other tracker
and snap to the object again. The next experiment (row 5) focuses on the long
term behavior. Thus, we chose to track a non-moving object in a static scene for
about 1 hour. In order to emphasize the effect on this relative short timescale we
choose low illumination conditions. While our proposed tracker stays at the object
the on-line booster starts drifting away. The reason for that is the accumulation of
errors. The final experiment shows a special case of drifting as depicted in the last
row of Figure 10.3. Two very similar objects are put together in the scene. Since
the pure on-line tracker has not the additional prior information it is very likely that
it is unstable and may switch to another object.

10.3 Resume

On-line learning is suitable and sometimes even necessary for many appli-
cations. – Really interesting tasks were those where unlabeled data has
to be incorporated. – However, then one has to deal with the drifting
problem.

I personally think, that on should see on-line learning and the label generating pro-
cess (supervision) as ONE problem. Maybe the approach mentioned in the last
section is a step in this direction.

This approach can be very beneficial for other tasks as well. For instance, we
did preliminary experiments for the grid-based person detector, as described in
Section 9.2. The prior information so far was coded by the labeled positive data
set. Now, we can train a person classifier, which is as good as possible and then
use this as prior in order to build an on-line classifier which just corrects its errors.
Nevertheless, a final remark concerning the necessity of on-line learning:

I am quite sure, that for many practical applications one can relax on-line learning to
incremental learning, i.e., save some “good” old samples for later access. Moreover,
may it is even possible to postpone decisions, i.e., use also upcoming examples, which
allows to overcome the causality assumption. Robust statistics can then be applied
in order to find outliers, correct errors, limit drifting, and thus better results can be
expected.
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Figure 10.3: Comparisons of our proposed SemiBoost tracker (yellow) and the pre-
viously proposed on-line tracker (dotted cyan). Our approach is still able to adapt to
appearance changes while drifting is limited.
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Appendix A

Off-line Boosting

This analysis is based on [25, 26]. In order to derive the AdaBoost Algorithm (see
Algorithm 1 in Section 2.3.1), we want to minimize the training error

ES =
1

L

L∑
l=1

{
1 H(xl) 6= yl
0 otherwise

(A.1)

on the fixed training set S = {(x1, y1), . . . (xL, yL)|yi ∈ {−1,+1}} with L samples,
which can be re-written using the definition of H(x) and concerning y ∈ {−1,+1}
as

ES =
1

L

L∑
l=1

{
1
∑N

n=1 αnhn(xl)yl ≤ 0
0 otherwise

. (A.2)

By using the exponential loss function loss(x, y)) = exp(−yf(x)) we get an upper
bound (since exp(−z) ≥ 1, z ≤ 0)

ES ≤
1

L

L∑
l=1

exp

(
−yl

N∑
n=1

αnhn(xl)

)
. (A.3)

Instead of doing a global minimization, we suppose that the weak classifiers
h1(x), ..., hn−1(x) are already calculated and fixed, as are their coefficients
α1, ..., αn−1. This means, that we perform a greedy search for the next best
classifier, added to the whole ensemble. In other words: AdaBoost minimizes
the exponential loss criterion (Equation A.3) via a forward-stage wise adaptive
approach [26]. Thus, we split of the n-th weak classifier, which is to be added:

(αn, hn) = arg min
αn,hn

L∑
l=1

exp

(
−yl

n−1∑
i=1

(αihi(xl))− ylαnhn(xl)

)
. (A.4)



132 Chapter A

This can be expressed as

(αn, hn) = arg min
αn,hn

L∑
l=1

wn,l exp (−ylαnhn(xl)) , (A.5)

where the coefficients

wn,l := exp

(
−yl

n−1∑
i=1

αihi(xl)

)
(A.6)

can be viewed as constants because we are optimizing αn and hn(x). If we have
found hn(x) and αn we can easily obtain the update rule for wn+1,l by doing the
recursive step (note, the information of the previous learned classifiers is captured
(encoded) only by the weights wn−1,l):

wn+1,l = exp

(
−yl

n∑
i=1

(αihi(xl))

)
=

= exp

(
−yl

n−1∑
i=1

(αihi(xl))

)
exp (−ylαnhn(xl)) =

= wn,l ·
{

exp(−αn) hn(xl) = yl
exp(αn) hn(xl) 6= yl

. (A.7)

The solution to Equation A.5 can be obtained in two steps (find the weak classifier
hn(x) and the corresponding weight αn). Therefore, we re-write Equation A.5 with
respect to the correct (ylhn(xl) = 1) and the incorrect (ylhn(xl) = −1) classified
samples

exp(αn)
∑

l:hn(xl)6=yl

wn,l + exp(−αn)
∑

l:hn(xl)=yl

wn,l = (A.8)

= (exp(αn)− exp(−αn))
L∑
l=1

wn,l ·
{

1 hn(x) 6= yl
0 otherwise

+ exp(−αn)
L∑
l=1

wn,l. (A.9)

When minimizing this with respect to hn(x) we see that the second term is constant
and thus this is equivalent to minimizing the weighted error of the training examples
for the new classifier, because the overall normalization factor does not affect the
location of the minima. Which is the classifier

hn(x) = arg min
hn

L∑
l=1

wn,l ·
{

1 hn(x) 6= yl
0 otherwise

(A.10)
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that minimizes the weighted error rate in the prediction y.

Similar, Equation A.5 is minimized with respect to αn. We define the normalized
weighted error en of the hypothesis hn(x) as

en :=

∑
l:hn 6=yl

wn,l∑L
l=1 wn,l

. (A.11)

Note, this can also be done by normalizing the weights wn,l itself such that∑L
l=1wn,l = 1. Therefore, the initial weights are defined by w1,l = 1

L
, l = 1, ...L.

Substituting Equation A.11 into Equation A.8 we get

αn = arg min
αn

(exp(αn)en + exp(−αn)(1− en)) , (A.12)

which is minimized by taking the derivative with respect to αn and setting it to zero

∂

∂αn
= exp(αn)en + exp(−αn)(1− en)(−1) = 0

exp(αn)en = exp(−αn)(1− en)

αn =
1

2
ln

(
1− en
en

)
. (A.13)

Summarizing, all the formulas presented in the AdaBoost algorithm are derived.

A.1 Training Error Theorem

Substituting αn back into Equation A.12 the result of the minimization in step n is

exp

(
1

2
ln

(
1− en
en

))
en + exp

(
−1

2
ln

(
1− en
en

))
(1− en) =

=

√
1− en
en

en +

√
en

1− en
(1− en) = 2

√
en(1− en). (A.14)

Let us write the error en = 1
2
− γn. Since a hypothesis that guesses each instances

class at random has an error rate 0.5 (on binary problems). Thus, γn measures how
much better than random are hn(x)s predictions.

2
√
en(1− en) =

√
1− 4γn ≤

√
−4γ2

n ≤ exp
(√
−4γ2

n

)
= exp(−2γ2

n) (A.15)

As can be seen from Equation A.5 the overall approximation (strong classifier) is
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then updated by the calculated weak classifier

n∑
i=1

αihi(x) =
n−1∑
i=1

αihi(x) + αnhn(x). (A.16)

After N boosting iterations and combining with Equation A.3 we yield the AdaBoost
training error theorem:

ES ≤
1

L

L∑
l=1

w1,l

N∏
n=1

exp(−ylαnhn(xl)) ≤

≤
N∏
n=1

exp
(
−2γ2

n

)
= exp

(
−2

N∑
n=1

γ2
n

)
. (A.17)

Hence, the training error drops exponentially with the number of weak classifiers
n, if the error of each weak classifier is better than random guessing (en < 0.5, or
equivalent γn > 0, n = 1, ..., N).

A.2 A Statistical view of Boosting

Following Friedman et al. [26] we are interested in the expected value over the binary
learning problem with is defined of samples from the distribution P : X ×{1,−1}.

E(exp(−yH(x))) = P (y = 1|x) exp(−H(x)) + P (y = −1|x) exp(H(x)) (A.18)

Since boosting minimizes this exponential loss by calculating H(x) we take the
derivative and set it to zero

∂E(exp(−yH(x)))

∂H(x)
= −P (y = 1|x) exp(−H(x))+P (y = −1|x) exp(H(x)). (A.19)

Using the fact P (y = −1|x) + P (y = 1|x) = 1 we get

P (y = 1|x) =
exp(H(x))

exp(H(x)) + exp(−H(x))
(A.20)

If we are interested only in the decision P (y = 1|x) > 0.5 this is equivalent to
H(x) > 0. As can be easily seen the boosted classifier minimizes the log-likelihood
rate

H(x) =
1

2
log

(
P (y = 1|x)

P (y = −1|x)

)
. (A.21)



Appendix B

On-line Boosting

In this section we want to give another derivation of the on-line AdaBoost algorithm
as proposed by Oza and Russell [92]. Note, this is not a proof, it is much more an
argumentation, which is inspired by the work of Friedman et al. [26].

We want to minimize the training as in Equation A.1. Since we do not have access to
all the examples at once, we cope with a sequence of samples (x1, y1), . . . , (xt, yt) and
are not allowed to re-access them. However we can save some internal parameters.
Thus, in on-line learning the cumulative mistakes are minimized and the objective
function, Equation A.1, gets

ES =
T∑
t=1

{
1 Ht(xt) 6= yt
0 otherwise

. (B.1)

We get hypothesis H1, . . . , Ht which is the best model up to time t and encodes
the knowledge from the examples seen so far. In the following, we show how a new
sample can be used to update (i) the weak classifiers and (ii) the voting weight α.

Similar as in the off-line case, by using the exponential loss (Equation A.5) gets

(αn, hn) = arg min
αn,hn

T∑
t=1

λn,t exp(−ytαnhn(xt)) (B.2)

with the coefficient

λn,t := exp

(
−yt

n−1∑
i=1

αi,thi,t(x),

)
(B.3)

which is the importance of the sample xt up to the n-th weak classifier. This is
closely related to wn,l in the off-line case as defined in Equation A.6. Therefore, the
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update step is equivalent and we get

λn+1,T = λn,T ·
{

exp(−αT,n) hT,n(xT ) = yT
exp(−αT,n) hT,n(xT ) 6= yT

(B.4)

In order to train/update the weak classifier we get according to Equation A.10

hn(x) = arg min
hn

T−1∑
t=1

λn,t ·
{

1 hn(x) 6= y
0 otherwise

+ λn,T ·
{

1 hn(x) 6= y
0 otherwise

(B.5)

The first term is fixed, because we cannot re-access the old training samples. But
they are used to train a classifier ht we have to update this classifier with respect to
λ.

Similarly, the update of α can be estimated. According to Equation A.11 we define
the estimated error of the examples seen so far and the hypothesis hn by

ê =

∑
t:ht,n(xt)6=yt

λn,t∑T
t=1 .λn,t

(B.6)

This error can be continuously updated using the sum of correctly classified samples
so far λcorr and wrongly classified examples λwrong (both initialized by 1) by

ên =
λwrong + δ(hn(x) 6= y)λ

λwrong + λcorr + λ
. (B.7)

Thus, Equation A.12 can be rewritten

αn = arg min
α

(exp(αn)ên + exp(−αn)(1− ên)) (B.8)

and the result be solving it (same as in Equation A.13) is

αn =
1

2
ln

(
1− ên
ên

)
. (B.9)

Summarizing both, the weak classifiers as well as the voting weights can be updated
and all the steps from the algorithm are derived.

Note, the only difference in our algorithm is the updates of the weights (Equa-
tion B.4) for the next weak classifier. By plugging in the definition of αn,T we get,
in contrast to Oza and Russell [92] (see Equation 3.5)

λn+1,T = λn,T ·

{ √
1−e
e

hT,n(xT ) = yT√
e

1−e hT,n(xT ) 6= yT
. (B.10)
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Further, by using fading memory (as described in Section 4.3) this can be easily
included in our argumentation, by weighting the example in order to update the
weak classifier (Equation B.5) as well as weighting the error (Equation B.6).
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Appendix C

Publications

During my work at the Institute for Computer Graphics and Vision at Graz
University of Technology the following paper were published. For the sake of com-
pleteness these publications are reported in the following in an inverse chronological
order. This thesis is mainly based on a subset of those papers.

Journals

[1] H. Grabner, T.T. Nguyen, B. Gruber, and H. Bischof. On-line boosting-based
car detection from arial images. ISPRS Journal of Photogrammetry & Remote
Sencing, 63(3):382–396, 2007.

Major Conferences

[1] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting
for robust tracking. In Proceedings European Conference on Computer Vision
(ECCV), 2008.

[2] A. Saffari, H. Grabner, and H. Bischof. SERBoost: Boosting with expecta-
tion regularization. In Proceedings European Conference on Computer Vision
(ECCV), 2008.

[3] C. Leistner, H. Grabner, and H. Bischof. Semi-supervised boosting using visual
similarity learning. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.
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[4] M. Grabner, H. Grabner, and H. Bischof. Learning features for tracking. In
Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2007.

[5] H. Grabner, P.M. Roth, and H. Bischof. Eigenboosting: Combining discrimina-
tive and generative information. In Proceedings IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2007.

[6] H. Grabner and H. Bischof. On-line boosting and vision. In Proceedings IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), volume 1,
pages 260–267, 2006.

Other Reviewed Conferences and Workshops

[1] H. Grabner, J. Sochman, H. Bischof, and J. Matas. Training sequential on-line
boosting class for visual tracking. In Proceedings International Conference on
Pattern Recognition (ICPR), 2008.

[2] C. Leistner, P. Roth, H. Grabner, H. Bischof, A. Stratzer, and B. Rinner. Visual
on-line learning in distributed camera networks. In Proceedings International
Conference on Distributed Smart Cameras, 2008.

[3] G. Schall, H. Grabner, M. Grabner, P. Wohlhart, D. Schmalstieg, and
H. Bischof. 3d tracking in unknown environments using on-line keypoint learn-
ing for mobile augmented reality. In In Proceedings Workshop on Visual Local-
ization for Mobile Platforms, 2008.

[4] P. Roth, H. Grabner, C. Leistner, M. Winter, and H. Bischof. Interatctive learn-
ing a person detector: Fewer clicks - less frustration. In Proceedings Workshop
of the Austrian Association for Pattern Recognition (AAPR), 2008.

[5] H. Grabner, C. Leistner, and H. Bischof. Time dependent on-line boosting
for robust backgroundmodeling. In Proceedings International Conference on
Computer Vision Theory and Applications, 2007.

[6] H. Grabner, P.M. Roth, and H. Bischof. Is pedestrian detection realy a hard
task? In Proceedings IEEE International Workshop on Performance Evaluation
of Tracking and Surveillance, 2007.

[7] St. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer. A 3d teacher
for car detection in aerial images. In Proceedings ICCV Workshop on 3D Rep-
resentation for Recognition, 2007.
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[8] M. Grabner, H. Grabner, J. Pehserl, P. Korica-Pehserl, and H. Bischof. Flea,
do you remember me? In Proceedings Asian Conference on Computer Vision
(ACCV), pages 657–666, 2007.

[9] T.T. Nguyen, H. Grabner, B. Gruber, and H. Bischof. On-line boosting for car
detection from aerial images. In Proceedings IEEE International Conference on
Research, Innovation and Vision for the Future, 2007.

[10] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boost-
ing. In Proceedings British Machine Vision Conference (BMVC), volume 1,
pages 47–56, 2006.

[11] M. Grabner, H. Grabner, and H. Bischof. Real-time tracking with on-line
feature selection. In Video Proceedings in conjunction with IEEE Conference
on Computer Vision and Pattern Recognition, 2006.

[12] H. Grabner, P.M. Roth, M. Grabner, and H. Bischof. Autonomous learning
a robust background model for change detection. In Proceedings IEEE Inter-
national Workshop on Performance Evaluation of Tracking and Surveillance,
pages 39–46, 2006.

[13] M. Grabner, H. Grabner, and H. Bischof. Fast approximated SIFT. In Pro-
ceedings Asian Conference on Computer Vision (ACCV), pages 918–927, 2006.

[14] M. Kpesi, M. Neffe, T. Van Pham, M. Grabner, H. Grabner, and A. Juffinger.
Audio-visual feature extraction for semi-automatic annotation of meetings. In
Proceedings IEEE International Workshop on Multimedia Signal Processing,
2006.

[15] P.M. Roth, H. Grabner, D. Skočaj, H. Bischof, and A. Leonardis. On-line
conservative learning for person detection. In Proceeding IEEE Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveillance,
2005.

[16] P.M. Roth, H. Grabner, D. Skočaj, H. Bischof, and A. Leonardis. Conservative
visual learning for object detection with minimal hand labeling effort. In Pro-
ceedings German Association for Pattern Recognition (DAGM), pages 293–300,
2005.

[17] H. Grabner, C. Beleznai, and H. Bischof. Improving adaboost detection rate
by wobble and mean shift. In Proceedings Computer Vision Winter Workshop,
pages 23–32, 2005.
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Books/Editor

[1] M. Grabner and H. Grabner. editors. In Proceedings Computer Vision Winter
Workshop, 2007.

Technical Reports

[1] M. Grabner, H. Grabner, and H. Bischof. Fast visual object identification and
categorization. NIPS Workshop in Interclass Transfer, 2005.

Others

[1] H. Grabner and C. Beleznai. History of computer vision. OCG Journal, 3:28–29,
2008.

[2] H. Schwabach, M. Harrer, A. Waltl, H. Bischof, A. Tacke, G. Zoffmann, C. Belez-
nai, B. Strobl, H. Grabner, and G. Fernndez. Vitus: Video based image analysis
for tunnel safety. In International Conference on Tunnel Safety and Ventilation,
2006.

[3] H. Grabner. Autodetektion mit AdaBoost. Master’s thesis, Graz University of
Technology, 2004.
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