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Abstract

Car detection from aerial images has been studied for years. However, given a large-scale aerial image with typical car and
background appearance variations, robust and efficient car detection is still a challenging problem. In this paper, we present a novel
and robust framework for automatic car detection from aerial images. The main contribution is a new on-line boosting algorithm
for efficient car detection from large-scale aerial images. Boosting with interactive on-line training allows the car detector to be
trained and improved efficiently. After training, detection is performed by exhaustive search. For post processing, a mean shift
clustering method is employed, improving the detection rate significantly. In contrast to related work, our framework does not rely
on any priori knowledge of the image like a site-model or contextual information, but if necessary this information can be
incorporated. An extensive set of experiments on high resolution aerial images using the new UltraCamD shows the superiority of
our approach.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Building an efficient and robust framework for object
detection from aerial images has drawn the attention of
research community in computer vision for years (e.g.,
Ruskone et al., 1996; Rajagopalan et al., 1999; Zhao and
Nevatia, 2003; Hinz, 2003; Alba-Flores, 2005). An
aerial image contains a lot of objects with a complicated
background of the urban scene. The UltraCamD camera
from Microsoft-Vexcel can deliver large format pan-
chromatic images as well as multi spectral images

(Leberl et al., 2003). The high resolution images have a
size of 11,500 pixels across-track and 7500 pixels along-
track. Thus, a panchromatic image has a size of 84 MB
and a RGB or NIR (near infrared) image has a size of
252 MB. These large images need automatic methods
for efficient processing.

Car detection from aerial images has a variety of civil
and military applications, such as transportation control,
road verification to support land use classification for
urban planning, military reconnaissance, etc.

Aerial images are usually taken from vertical
direction. Although with some constraints on the
viewpoint, the appearance of the cars in the image is
varying widely. Cars appear as small objects, which
vary in intensity and many details are not visible.
Depending on the resolution a typical car has a size
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between 13 and 26 pixels (Zhao and Nevatia, 2003). The
appearance of cars may have parts occluded by the
shadow of buildings or trees, or may be dominated by
the shadow of the car. Moreover, the urban scene com-
prises a complicated background with a variety of objects
that look like cars such as windows, roofs, corners of
streets, or buildings. All these issues make it difficult to
characterize the features of a car and impose challenges in
recognition of cars from aerial images. Therefore,
although a lot of efforts have been made, it is still an
open problem to build an efficient and robust algorithm
for automatic car detection from aerial images.

In recent years, boosting, a machine learning method,
has become popular. Referring to the overview given in
Schapire (Schapire, 2003), boosting has been used for
text recognition, routing, medical diagnostic, segmenta-
tion, etc. Various boosting frameworks have been
developed for solving machine learning problems
(Schapire, 2003; Demiriz et al., 2002; Freund and
Schapire, 1997; Stojmenovic, 2006). Following the
remarkable success of the face detector introduced by
Viola and Jones (Viola and Jones, 2001), boosting
techniques have been widely used for different problems
in the computer vision community. The detection
problem is formulated as a binary classification problem,
discriminating the object from the background. The
learned classifier is evaluated on the whole image. In
order to speed up the exhaustive search, in the classical
work of Viola and Jones (2001) integral images were
employed, which allow very fast computation of simple
image features for object representation. Additionally, a
cascade structure makes the detector simultaneously fast
and accurate. This framework allows to proceed
efficiently on large image data and has been successfully
applied for various object detection problems.

Most of the above work uses Adaboost for the
detection of objects in terrestrial images. None of them
(up to our knowledge) uses boosting methods for object
(car) detection from aerial images. In this paper, we
propose a robust boosting-based system for car detec-
tion from aerial images. The main goal is high quality
detection by using novel machine learning methods with
an efficient training mechanism.

First, we use boosting and particularly an efficient
integral image representation for fast calculation of cars'
features. In addition to the commonly used Haar wave-
lets (Viola and Jones, 2001), we employ local orienta-
tion histograms (Dalal and Triggs, 2005) and local
binary patterns (Ojala et al., 2002) as features.

Second, we use a novel on-line version of Adaboost
to train the detector. It performs on-line updating on the
ensembles of features during the training process. By

on-line training, we can update the classifier as new
samples arrive, and therefore we can minimize the
tedious work of hand labeling of training samples.

The developed framework results in a robust and
automatic car detection system from aerial images
achieving high performance. The system is flexible
since it does not require any site-model or contextual
knowledge or other information influencing the appear-
ance of cars in images.

The paper is organized as follows. Section 2 gives a
brief review of related work. Section 3 presents our
approach for car detection from aerial images. Section 4
is dedicated to experiments and results. It also discusses
the suitability data delivered by UltraCamD to integrate
our system with related applications. Finally, Section 5
ends up with discussion and future work.

2. Related work

Recently, a lot of research has been dedicated to
object recognition using machine learning methods (e.g,
Papageorgiou and Poggio, 2000; Schneiderman and
Kanade, 2000; Heisele et al., 2006; Bernstein and Amit,
2005). Related work on car detection can be roughly
divided into two groups of approaches according to the
type of modeling: explicit and implicit (Hinz, 2003).

Explicit modeling uses a generic car model (Zhao
and Nevatia, 2003; Moon et al., 2002; Hinz, 2003;
Schlosser et al., 2003; Hinz and Stilla, 2006). A car is
represented as a 2D or 3D model representing the shape
of cars, e.g. by a box or wire-frame representation.
Prominent geometric features of cars are used on
different levels of detail. In the detection stage, image
features are extracted and grouped to construct struc-
tures similar to the model. Mainly used features are
rectangles of car boundaries or the front windshields.
Additionally, radiometric features such as intensity of
shadow or color can also be employed. Car detection is
done by grouping extracted image features “bottom–up”
or by matching the model “top–down” to the image. The
car object is considered to be detected if there is
sufficient evidence for the model in the image. This
approach relies mainly on geometric features such as
edges, lines and areas to construct a hierarchical struc-
ture. One to the ground resolution of aerial images, in
the decimeter range, the models cannot be very detailed
because the features would not be detectable. On the
other hand, generic and simple models have the inherent
danger of fitting to too many positions in the image,
therefore not being discriminative enough.

In an implicit or appearance-based approach, the car
model is created by example images of cars and consists
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of gray value or texture features. Appearance models are
generated by collecting statistics over these features. For
car detection in terrestrial images, some part or component
based models have been proposed (Bileschi et al., 2004;
Heisele et al., 2006; Bernstein and Amit, 2005; Leibe et al.,
2004). The classifier architecture can be a single classifier, a
combination of classifiers or a hierarchical model for
classification. Support vector machines were mainly used
(Rajagopalan et al., 1999; Schneiderman and Kanade,
2000; Papageorgiou and Poggio, 2000; Heisele et al., 2006;
Bernstein and Amit, 2005). For image regions, the
detection is done by computing feature vectors and
classifying them according to themodel features. Although
these approaches have certain advantages, there also exist
drawbacks: Feature calculation and classification are
computational expensive. Moreover, there is a need for a
huge amount of labeled data for training the detector. The
training set should provide a good coverage of the space of
possible appearance variations of the data. This needs a lot
of time and labor to build a representative training set.

Co-training versions of the classifier have been
proposed to deal with this problem for object detection
and classification (Javed et al., 2005; Levin et al., 2003;
Nair and Clark, 2004; Roth et al., 2005; Abramsol and
Freund, 2005). The on-line strategy aims at reducing the
manual labeling effort and makes possible to increase
variability of the training data, while progressively im-
proving the classifier.

Most related approaches attempt to match the model
with the images to detect/recognize appearances of cars.
Additionally, some methods limit the search area by
taking into account site-model or contextual knowledge
(Zhao and Nevatia, 2003; Moon et al., 2002). For
example, cars are only searched on known roads or
parking lots. No method has yet explored the power of
state-of-the-art machine learning methods, such as
Adaboost, for adaptively and efficiently training a car
detector for large-scale aerial images.

3. On-line boosting for car detection

We propose an on-line boosting-based framework for
car detection from aerial images based on implicit
appearance-based models. The main contribution of this
paper is an on-line boosting algorithm for car detection
in aerial images. On-line training avoids the need for a
huge pre-labeled training set. Moreover, efficient data
structure allows a fast feature calculation thereby
enabling interactive training and classification on the
large aerial images.

First, we summarize the boosting method which will
be used for feature selection. The active training process,

which allows efficient on-line learning, is described
afterwards. Then, the features used for classification are
discussed. Car detection is performed by applying the
trained classifier over all possible locations and rotations
of the image. Exhaustive search in an image is possible
because we use efficient data structures. Finally, a post
processing stage using the mean shift clustering
technique is presented to improve detection rate. In
addition, we show how context information can be used
for further improvement of detection results.

3.1. Boosting

In general, boosting converts (boosts) a weak learning
algorithm into a strong one. Boosting has been analyzed
carefully and tested empirically bymany researchers (e.g.,
Schapire et al., 1997. Various variants of Boosting have
been developed, e.g. Real-Boost (Freund and Schapire,
1997), LP-Boost (Demiriz et al., 2002). We focus on the
discrete AdaBoost (adaptive boosting) algorithm intro-
duced in Freund and Schapire (1997). It adaptively re-
weights the training samples instead of re-sampling them.
The basic algorithmworks as follows: Given a training set
X ¼ fhx1; y1i; N ; hxL; yLijxiaRm; yiaf�1;þ1gg with
positive and negative labeled samples and an initial
uniform distribution p xið Þ ¼ 1

L over the examples. Based
on χ and p(x), a weak classifier hweak is trained. A weak
classifier is a classifier that has to perform only slightly
better than random guessing, i.e., for a binary decision
task, the error rate must be less than 50%. The classifier is
obtained by applying a learning algorithm, e.g. applying
statistical learning for a decision stump. Based on the error
en the weak classifier hn

weak gets assigned a weight
an ¼ 1

2 d ln
1�en
en

� �
.The probability p(x) is updated such that

it increases for the samples that are misclassified. The
corresponding weight is decreased if the sample is
classified correctly. Therefore, the algorithm focuses on
the difficult examples. At each boosting iteration a new
weak classifier is added and the process is repeated until a
certain stopping condition is met (e.g. a given number of
weak classifiers are trained). Finally, a strong classifier
hstrong (x) is computed as linear combination of a set of N
weak classifiers hn

weak (x):

hstrong xð Þ ¼ sign conf xð Þð Þ;

conf xð Þ ¼
PN

n¼1 and h
weak
n xð ÞPN

n¼1 an

ð1Þ

As conf (x) is bounded by [−1, 1], it can be
interpreted as a confidence measure. The higher the
absolute value is, the more confident is the result.
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Freund and Schapire (1997) proved strong bounds on
the training and generalization error of AdaBoost. For
the case of binary classification the training error drops
exponentially fast with respect to the number of
boosting rounds N, i.e., number of weak classifiers.
Schapire et al. (1997) and Rudin et al. (2004) showed
that boosting maximizes the margin and proved that
larger margins for the training set are translated to
superior upper bounds on the generalization error.

3.2. Boosting for feature selection (combination)

Boosting for feature selection was first introduced by
Tieu and Viola (2000). In their work, feature selection
from a large set of features is done by Adaboost. The
main idea is that each feature corresponds to a single
weak classifier and boosting selects an informative
subset from these features.

Training proceeds similar to the described boosting
algorithm. Given a set of possible features F ={ fl,…, fk}
in each iteration step n the algorithm builds a weak
hypothesis based on the weighted training samples. The
best one forms the weak hypothesis hn

weak which
corresponds to the selected feature fn. The weights of
the training samples are updated with respect to the error
of the chosen hypotheses. Finally, a strong classifier
hstrong is computed as a weighted linear combination of
the weak classifiers, where the weights αn are estimated
according to the errors of hn

weak as described above.

3.3. On-line boosting for feature selection

Boosting for feature selection as described above
works off-line. Thus, to train a classifier, all training
samples must be given in advance. In our work we use a
novel on-line feature selection algorithm (Grabner and
Bischof, 2006) based on an on-line version of AdaBoost
(Oza and Russell, 2001b,a). This allows to adaptively
train the detector and efficiently generate the training set.
First, we briefly summarize on-line boosting. Second, we
discuss how it can be used for feature selection.

The basic idea of on-line boosting is that the
importance or difficulty of a sample can be estimated
by propagating it through a set of weak classifiers. One
can think of this as modeling the information gain with
respect to the first n classifier and code it by the im-
portance weight λ (initialized by 1) for doing the update
of the n+1-st weak classifier. Oza and Russell (2001a,b)
have proved that, if off-line and on-line boosting are
given the same training set, then the weak classifiers
returned by on-line boosting converges statistically to
the one obtained by off-line boosting as the number of

iterations N→∞. Therefore, for repeated presentation of
the training set, on-line boosting and off-line boosting
give the same result. In our framework, on-line boosting
for feature selection is based on introducing “selectors”
and performing on-line boosting on these selectors and
not directly on the weak classifiers.

Each selector hsel (x) holds a set of M weak clas-
sifiers {h1

weak(x),…, hM
weak(x)} and selects one of them

hsel xð Þ ¼ hweakm xð Þ ð2Þ
according to an optimization criterion (we use the
estimated error ei of each weak classifier hi

weak such that
m=arg mini ei). Note, that the selector can be interpreted
as a classifier as it switches between the weak classifiers.
Training a selector means that each weak classifier is
updated and the best one with the lowest estimated error
is selected. Similar to the off-line case, the weak
classifiers correspond to features, i.e. the hypotheses
generated by the weak classifier are based on the
response of the features.

In particular, the on-line training version of Ada-
Boost for feature selection works as follows: First, a
fixed set of N selectors, h1

sel,.., hN
sel, is initialized ran-

domly with weak classifiers, i.e. features. When a new
training sample 〈x,y〉 arrives, the selectors are updated.
This update is done with respect to the importance
weight λ of the current sample. For updating the weak
classifiers, any on-line learning algorithm can be used
(see Section 3.4 for more details). The weak classifier
with the smallest estimated error is chosen by the selec-
tor. The corresponding voting weight αn and the im-
portance weight λ of the sample are updated and passed
to the next selector hn+ 1

sel . The weight increases if the
example is misclassified by the current selector and
decreases otherwise. For more details, see Grabner and
Bischof (2006).

Finally, a strong classifier is obtained by linear com-
bination of N selectors.

hstrong xð Þ ¼ sign
XN
n¼1

and hseln xð Þ
 !

ð3Þ

In contrast to the off-line version a classifier is avail-
able at any time and can be directly evaluated which
allows to provide immediate user feedback at any stage of
the training process.

3.4. Image representation and features

The main purpose of using features instead of raw
pixel values as input to a learning algorithm is to reduce

385H. Grabner et al. / ISPRS Journal of Photogrammetry & Remote Sensing 63 (2008) 382–396



Author's personal copy

the intra-class variability while increasing the extra-class
variability and adding insensitivity to certain image
variations (e.g illumination). We use three different
types of features:

• Haar-like features (Viola and Jones, 2001): The
feature value is calculated as the sum of pixel values
within rectangular regions which are either positive
or negative weighted. These features were introduced
by Viola and Jones for face detection and are now
widely used in computer vision. We use four different
prototypes of features, see Fig. 1(a). A two-rectangle
feature consists of two regions which have the same
size and shape and are horizontally or vertically
adjacent. For a three-rectangle feature, the sum for
the two out- side rectangles is subtracted from the
sum in the center rectangle. For the four-rectangle
feature the difference between diagonal pairs of
rectangles is computed. Finally, for a center-feature
the center region is subtracted from the surrounding
pixels. These features are calculated at different scales.

• Orientation histograms (Levi and Weiss, 2004; Dalal
and Triggs, 2005): First, a gradient image is com-
puted using the Sobel-filter. A magnitude weighted
histogram over the gradient directions is built to
represent the underlying rectangular patch. In par-
ticular, we use an 8 bin orientation histogram with
constant bin size. The basic idea is to describe the
appearance of an object part by the gradient infor-
mation similar to the famous SIFT descriptor by
Lowe (2004).

• A simplified version of local binary patterns (LBP)
(Ojala et al., 2002): We use a four-neighborhood, i.e.
24 =16 patterns, as a 16 bin histogram feature similar
to (Zhang et al., 2006). This is a texture descriptor
which captures the statistic of normalized pixel
values in a local neighborhood. The LBP-value of a

3×3 image patch x is calculated as follows (see also
Fig. 1(b)):

LBP xð Þ ¼
X3
i¼0

s xi � xcenterð Þd 2i

with s zð Þ ¼ 1 z z 0
0 z b 0

�
ð4Þ

The final representation is a histogram of the LBP
values obtained by shifting the 3×3 patch in the whole
image patch.

Note, that the computation of all these feature types
can be done very efficiently using integral images (Viola
and Jones, 2001) and integral histograms (Porikli, 2005)
as data structures. This allows for exhaustive template
matching for the whole image. An integral image,
denoted as II, sums up all the pixel values from the
upper left up to the current position. More formally, it is
defined on an image I as

II x; yð Þ ¼
Xx
xV¼1

Xy
yV¼1

I xV; yVð Þ ð5Þ

The pre-calculation of an integral image for all pixels
can be efficiently implemented in one pass over the
image. Afterwards, any sum of any rectangular region
can be computed by only 4 memory accesses and 3
additions, see Fig. 2 for an example. This idea can be
easily adapted to represent histograms: for each bin one
integral image is built separately.

To obtain a weak classifier hj
weak from a feature j, we

model the probability distribution of this feature for
positive and negative samples with fj(x) evaluating this
feature on the image x. Following Grabner and Bischof
(2006) we estimate the probability P (1| fj (x)) assuming a
Gaussian distribution N (μ+,σ+), i.e. we incrementally

Fig. 1. Basic image features used. (a) The value of the Haar-like feature is the difference of the pixel values between the white and the black marked
region. (b) Simple version to obtain a local binary pattern value (LBP).
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update μ+ and σ+ for positively labeled samples and
P (−1| fj (x)) byN (μ−,σ−) for negatively labeled samples.

For the classic Haar-like features, we use a Bayesian
decision criterion based on the estimated Gaussian
probability density function g(x|μ, σ).

hweakj xð Þ ¼ sign P 1j fj xð Þ� �� P �1jfj xð Þ� �� �
csign g fj xjAþ; rþð Þ � g fj xð ÞjA�; r�� �� �� ð6Þ

For the histogram based feature types, orientation
histograms and LBP, we employ a nearest neighbor
learning algorithm. The positive and negative samples
are modeled by one cluster each. The cluster centers pj
and nj are incrementally updated. The weak classifier is
given by

hweakj xð Þ ¼ sign D fj xð Þ; pj
� �

� D fj xð Þ; nj
� �� �

ð7Þ

where D is a distance metric, in our case the Euclidian
norm is used.

Since we know the resolution of the image, search for
cars at different scales is not necessary. Yet cars can
appear at any orientation. Instead of training the clas-
sifier with different orientations we train it at one
“norm” orientation. The detector can be made rotation
invariant by computing the features at different angles.
Lienhart in Lienhart and Maydt (2002) introduced an
additional set of rotated Haar-like features, which com-
prise an enriched set of basic features and can be com-
puted efficiently. Barczack et al. (2005) proposed to use
different types of Haar-like features. A previously
trained classifier is converted to work at any angle, so
rotated objects can be detected. A real-time version for
the rotation invariant Viola–Jones detector has been
reported in Wu et al. (2004). A similar technique is
employed in our system: the detector is rotated by
increments in 10°. For the orientation histogram

features, the rotation can be done easily by shifting the
histogram.

3.5. Training and detection

The training process is performed by iteratively labeling
samples from the images and updating parameters for the
model. The labeled samples can be positive or negative. In
order to minimize the hand labeling effort, we apply an
active learning strategy. The key idea is that the user has to
label only examples which are not correctly classified by
the current classifier. In fact, it has been shown by the
active learning community (Park and Choi, 1996), that it is
more effective to sample at the current estimate of the
decision boundary than at the unknown true boundary.
This is exactly what we aim at with our approach.

We evaluate the current classifier on an image. The
human supervisor labels additionally “informative”
samples, e.g. marks a wrongly labeled example which
can be either a false or missed detection. The classifier is
evaluated and updated after each labeling of a sample.
The new updated classifier is applied again on the same
image or on a new image, and the process continues.
This is a fully supervised interactive learning process.

Since labeling of samples in the training phase is an
interactive process with human supervision, we can
intuitively choose to label the most informative and discri-
minative sample at each update. This allows the parameters
of the model to be updated in a greedy manner with respect
to minimizing the detection error, meaning that the
parameters of the model can be learned very fast. It also
avoids labeling redundant samples that do not contribute to
the current decision boundary. Therefore this saves a lot of
labeling effort. Moreover, by storing parameters of the
current training classifier, we can retrain it and make use of
pre-trained classifier any time, if necessary.

After training, the detection is performed by applying
the trained classifier exhaustively on the images. A car is
considered to be detected if the output confidence value
of the classifier is above a threshold, i.e. zero. The lower
the threshold, the more likely an object is detected as a
car, but on the other hand the more likely a false positive
occurs. For a higher threshold the false positives de-
crease at the expense of the detections. The process results
in many overlapping detections. Therefore, a post
processing stage is needed to refine and combine these
outputs. It significantly improves the detection rate.

3.6. Post processing

Following Grabner et al. (2005) we use non-
parametric clustering-based object detection derived

Fig. 2. Efficient calculation of the sum over a rectangular area. The
value of the integral image at PositionP1 is the sum of the pixel values in
region A. P2 corresponds A+B, P3 to A+C and P4 to A + B + C + D.
Therefore, the sum over the areaD can be calculated byP4 +P1−P2−P3.
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from the probability distribution of classifier output. The
strong classifier generates a probabilistic output. For
each image location U we obtain multiple outputs Pk

representing object appearance's probability (in our case
the confidence conf (·) of the strong classifier) at each
angle k of the image. To obtain a distribution of object
probabilities for each rotation angle, we apply kernel
density estimation. Let {Ui}i=1,…,n denote the image
locations where classification is performed. For each
angle k we obtain a probability density estimate

pk̂ uð Þ ¼
Xn
i¼1

Pk Uið Þd Kk
u� Ui

W

� �
; ð8Þ

where Kk is a two-dimensional Gaussian kernel with a
size equivalent to the object size W scaled by the con-
fidence of the classifier output. The cumulative density
estimate containing the sum of probabilities oven all
angles is denoted as p ĉ uð Þ ¼ Rk p k̂ uð Þ. Mean shift
clustering is applied to this density estimate to delineate
the appearance of objects. In our case, a simple version
is used where K is a two-dimensional flat kernel.

The mean shift algorithm is a non-parametric tech-
nique to locate density extrema on modes of a given
distribution by an iterative procedure (Comaniciu and
Meer, 1999). Starting from a location u the local mean
shift vector represents an offset to u′, the nearest mode
along the direction of maximum increase in the under-
lying density function. The density is estimated within
the local neighborhood by kernel density estimation
where at a data point a kernel weights K(a) are com-

bined with weights associated with the data, i.e. with
sample weights. In our case sample weights are defined
by the values of the density estimate p̂c(a) at pixel
locations a. The new location vector u′ is obtained by

uV¼
P

a K a� uð Þd pĉ að Þd aP
a K a� uð Þd p ̂c að Þ : ð9Þ

For a uniform kernel K that we use here, it was
shown that fast evaluation of Eq. (9) is feasible using
integral images (Beleznai et al., 2004).

3.7. Land use classification and street layer

In some applications, context information is available
and can be used for further improvement of the per-
formance. In aerial images there may exist details of
roofs, windows, etc. of buildings that look similar to
cars and may therefore lead to false detections. These
false detections can be eliminated by using results from
other processing stages of the interpretation of aerial
images (Zebedin et al., 2006; Leberl et al., 2003). In this
work, a street layer obtaining by land use classification
(Zebedin et al., 2006) is employed as context. The street
layer contains road information, which is used for
improving the detection rate.

Land use classification is a two-step process performed
on multi spectral digital aerial images. For initial
classification, RGB and NIR images are used. A support
vector machine (Vapnik, 1995) is trained for classification
on these images. For refined classification, additional
height data generated by aerial triangulation and dense

Fig. 3. Examples of positively (a) and negatively (b) labeled training samples during the on-line training process.
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matching are used. The classification results are data
layers for streets, buildings, trees, low vegetation and
water. In the context of car detection we are only
interested in the street layer. The street layer is used to
mask the possible regions such as road or parking lots,
where cars may be located. This helps to reduce the
number of false positives considerably.

4. Experiment and result

The aim of our experiments is to demonstrate the
efficiency of on-line training and the robustness of our
framework for car detection from aerial images.

4.1. Data sets

In this work we use two different datasets. The first
dataset was acquired in the summer of 2005 from the
city center of Graz, Austria. It consists of 155 images
flown in 5 strips. The along-track overlap is 80% and the
across-track overlap approximately 60%. The ground
sampling distance is about 8 cm. Therefore, a car is
supposed to consist of 24×50 image pixels. The second
dataset was acquired in the winter of 2005 capturing the
city center of Philadelphia. It consists of 158 images
with an overlap of 90% and a sidelap of approximately
60%. The ground sampling distance is about 10 cm.

Fig. 4. Learning process: improvement of classifier performance — (a) original subimage from Graz data set, (b) result after training with only one
positive sample, (c) after training with 10 samples and (d) final result without post processing after training with 50 samples.
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Both datasets were acquired by the UltraCamD camera.
The high resolution panchromatic images used for car
detection, aerial triangulation and dense matching have
a size of 11,500 pixel across-track and 7500 pixel along-
track. The multi spectral low resolution images em-
ployed in the initial step of land use classification have a
size of 3680×2400 pixel. The high overlap was chosen
to make aerial triangulation and dense matching more
reliable.

Because we know the resolution of the aerial
images, we can specify rectangle patch size of cars. It
has to be carefully chosen to cover the area, which
contains a car in the middle and a narrow margin (see
Fig. 3(a)). This is done in order to include contextual
information of cars. Usually the car's length is double
its width. We have chosen the patch size to be 35×70
pixel.

For this paper, only four large typical subimages
were employed as training and test sets. Two images
are from Graz city, the other two from Philadelphia.
Each subimage has a size of 4000× 4000. The test
sets are separated from the training sets. The test sets
Graz and Philadelphia contain 324 and 1495 cars,
respectively. We use gray-valued images obtained
from the original multi spectral images for training
and testing.

4.2. Training

We start with a random classifier which comprises
of 500 weak classifiers and 250 selectors. The clas-

sifier is improved on-line after labeling training
samples by the user. Thus, we make use of the
advantages of active learning. During training we have
labeled 1420 samples. There are 410 positive samples,
each sample containing a car, and 1010 negative
samples, each showing diverse background patches
(for examples see Fig. 3)1. The more informative the
samples are, the faster the system learns. Moreover,
the training samples can be diversified and adjusted
during training to capture the variability of the real
data. That the number of positive samples is much
smaller than the number of negative samples stems
from the fact that the variability of the background
is much larger than of the cars. In comparison with
other object (car) detection systems, our system
needs quite a small number of training samples. As
can be seen in Fig. 4, after several training iterations
almost all cars which have a distinct appearance and
fit to the (angle of the) detector are detected. Fig. 5
depicts the detected objects without the refinement
step (a) and the detected points after applying mean
shift clustering (b). Finally, Fig. 6 shows the con-
tinuous improvement of the classifier over time, i.e.,
for an increasing number of labeled training samples,
on Graz data set.

1 Since we train on-line a classifier is available all the time. An
acceptable result can be obtained after labeling about 800 samples.
The longer the training, i.e., the more samples are labeled, the better is
the performance.

Fig. 5. Postprocessing: (a) raw output of the classifier applied on a subimage, (b) after combing multiple detections by mean shift based clustering
(subimage from Graz data).
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Since we want to have good training samples for fast
training the classifier, we first train the detector on Graz
data. This data set is less noisy due to good imaging
quality (in term of sharpness and contrast). We then
evaluated the system on both test sets. The performance
is quite good on Graz data set. However, it drops sig-
nificantly on Philadelphia data. So further training is
needed to cope with variability of real data. As we
expected, after training with few samples from the
Philadelphia data, the classifier adapts quite well and
reaches the performance as reported in the following
section. Note that we keep the same parameter settings
as well as the same car patch size for both data sets in
training and test phases, except at post processing step.
The only parameter that needs to be adjusted is a
threshold of the confidence (cf. Section 3.5). For Graz

Fig. 6. Learning process: performance versus number of training
examples, on Graz data.

Fig. 7. Results of car detection in large aerial images (left: Graz images, right: Philadelphia images): Cars appear with different orientations and are
partly occluded all on highly complicated background. The dark squares represent detections at different angles and bright points are detections after
post processing, each point corresponds to one detected car.
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data, distinctive car features are easily obtained due to
good imaging quality, this value is set higher to avoid
some false positives that may occur. For Philadelphia
data, the value is smaller.

4.3. Performance evaluation

We apply the trained detector on the whole image to
detect cars. For quantitative evaluation, we count as a
correct detection if the distance between a detected
patch's center and a car's center in ground truth is less
than half width of car size (i.e. 10 pixels).

We report the results for the two data sets Graz and
Philadelphia, which contain 324 and 1495 cars, respec-
tively. Figs. 7 and 9 present the detection results
in several subimages. They show complicated back-
grounds of urban scenes with many car-like objects.
The cars also appear with slightly different view
angles, different contrast, lighting condition, etc. Many
cars are severely occluded by buildings or trees,
dominated by their shadow, or have very low contrast.
As one can see, all the cars with distinctive features
have been detected. Also almost all difficult cars were
found. Some partly occluded cars are detected, some
are missed. Some objects that look like cars are
reported as cars, but with low confidence value and
have been removed at the post processing stage. The
system can also deal with slightly different sizes of
cars. We have trained it on samples of size of 35×70
pixels. We then applied it for detection of cars on both
Graz and Philadelphia datasets with ground sampling
distances of approximately 8 cm and 10 cm, respec-
tively. The results show no significant differences. For

performance evaluation, we use a common measure for
object detection namely recall-precision curves (RPC)
as in (Agarwal et al., 2004):

Precision rate ¼ # true positives
# true positivesþ # false positives

ð10Þ

Recall rate ¼ # true positives
# true positivesþ # false negatives

ð11Þ

F �measure ¼ 2d Recall rated Precision rate
Recall rateþ Precision rate

ð12Þ

The precision rate shows how accurate we are at
predicting the positive class. The recall rate tells us how
many of the total positives we are able to identify.
For detection there is always a compromise between
precision and recall. This is evaluated by the F-measure
as the harmonic mean. The RPCs characterizing the
performance of our framework for the two datasets with
the same parameters setting are given in Fig. 8 (lower
curves).

In applications such as the estimation of traffic flow,
context information can be given. We use the street layer
from land use classification for road verification (see
Section 3.7). This information improves the detection by
eliminating false positives (cf. Fig. 9).

For a comparison, besides the regular RPC curves,
the RPC curves taking into account context information
are also given in Fig. 8, upper ones. As expected, the
performance of the system is improved.

Experimental results show that in general the per-
formance of our framework is good and even superior in

Fig. 8. RPC of the system on Graz data set (a) and on Philadelphia data set (b); upper curves: increasing detection performance on the Graz and
Philadelphia datasets when including context information (street layer classification).
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comparison related work (Zhao and Nevatia, 2003;
Hinz, 2003; Hinz and Stilla, 2006; Ruskone et al., 1996;
Yao and Zhang, 2005).

Moreover, it is a robust and automatic system on
large-scale aerial images. In terms of detection rate and
especially efficiency: Due to the lack of public available
datasets for evaluation of the system, a fair comparison
is not possible. Additionally, different methods have
been employed for evaluation. Some related works even
did not provide clearly their performance evaluation,
only some intuitive results were shown (Schlosser et al.,
2003; Hinz, 2003).

4.4. Exploiting the redundancy in multiple images

The high overlap of the UltraCamD images results in
a high redundancy which can be exploited to improve
the car detection at no additional costs. Leberl and
Szabo (2005): “One can produce as many images within
a flight line as one wishes, with no added costs, and thus
increase the traditional forward overlap from 60% to
80% or 90%”. The high overlaps producemultiple images
for each ground point. This can be exploited to reduce
occlusions due to buildings and vegetation, providing
superior results. As one can see in Fig. 10, cars which are
occluded by buildings or trees in one image can become
visible and detected in other image of the same flight. For
applications such as estimation of transportation flow or
terrestrial texture restoration, the use of redundancy is
certainly very helpful. Since the establishment of ground
truth is tedious for overlapping images, we have not yet
systematically evaluated the improvement by using
redundancy.

5. Conclusion and future work

We have developed an efficient framework for
automatic car detection from aerial images. This is the
first proposal to use a state-of-the-art machine learning
technique, namely Adaboost, for the detection of cars
from large-scale aerial images. We have used integral
images for efficient representation and computation of
car features. Three types of features, Haar-like, orienta-
tion histogram and local binary pattern, are employed for
generating hypothesis for training the detector. More-
over, a novel on-line version of boosting is used for
efficient training of the developed system. On-line
learning avoids building huge pre-labeled training set
and makes use of interactive training. This results in a
robust and efficient system for car detection from large
aerial images. The system also deals well with the
variability of car appearances in complicated back-
grounds of urban aerial images. Experimental results
show the applicability and even the superiority of our
framework for applications including estimation of
transportation flow, road verification for supporting
land use classification and for restoring texture to
complete 3D map generation from digital aerial images.

The system can be improved and extended in the
following ways:

• Inclusion of more data samples for training. This
results in improvement of the generalization of the
detector and better performance.

• Diversification of the features or parameters for
weak classifiers. This increases the complexity of the
system making it possible to deal with hard samples.

Fig. 9. Objects on the roof which have been reported as cars are removed using the road mask. The dark squares represent detections at different
angles and bright points are detections after postprocessing, each point corresponds to one detected car.
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• Use of information from aerial triangulation and pos-
sibility also dense matching to detect cars in multiple,
overlapping images that differ in their viewing angle
including automatic combination of the results. This
yields higher performance for the system.
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