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Abstract

Very recently tracking was approached using classification techniques such
as support vector machines. The object to be tracked is discriminated by a
classifier from the background. In a similar spirit we propose a novel on-line
AdaBoost feature selection algorithm for tracking. The distinct advantage of
our method is its capability of on-line training. This allows to adapt the clas-
sifier while tracking the object. Therefore appearance changes of the object
(e.g. out of plane rotations, illumination changes) are handled quite naturally.
Moreover, depending on the background the algorithm selects the most dis-
criminating features for tracking resulting in stable tracking results. By using
fast computable features (e.g. Haar-like wavelets, orientation histograms, lo-
cal binary patterns) the algorithm runs in real-time. We demonstrate the per-
formance of the algorithm on several (publically available) video sequences.

1 Introduction

The efficient and robust tracking of objects in complex environments is important for
a variety of applications including video surveillance [25], autonomous driving [1] or
human-computer interaction [5, 4]. Thus it is a great challenge to design robust visual
tracking methods which can cope with the inevitable variations that can occur in natural
scenes such as changes in the illumination, changes of the shape, changes in the view-
point, reflectance of the object or partial occlusion of the target. Moreover tracking suc-
cess or failure may also depend on how distinguishable an object is from its background.
Stated differently, if the object is very distinctive, a simple tracker may already fulfill the
requirements. However, having objects similar to the background requires more sophisti-
cated features. As a result there is the need for trackers which can handle on the one hand
all possible variations of appearance changes of the target object and on the other hand
are able to reliably cope with background clutter.

Several approaches have been proposed to fulfill these two main requirements for
tracking. To cope with appearance variations of the target object during tracking, existing
tracking approaches (e.g. [3, 8, 10]) are enhanced by adaptivness to be able to incre-
mentally adjust to the changes in the specific tracking environment (e.g. [14, 23, 17, 22,
13, 2, 15, 26]). In other words, invariance against the different variations is obtained by
adaptive methods or representations. Many classical algorithms have been modified in
order to be able to adjust the tracking algorithm to the tracking environment. The classi-
cal subspace tracking approach of Black et al. [3] was enhanced by incremental subspace
updating in [14, 22]. In [14] it is proposed to express the general adaption problem as a



subspace adaption problem, where the visual appearance variations at a short time scale
are represented as a linear subspace. In contrast, [26] suggests an on-line selection of
local Haar-like features in order to handle possible variations in appearance.

In addition, to the on-line adaption problem, recently many techniques have addressed
the idea of using information about the background in order to increase the robustness of
tracking [1, 19, 2, 26, 6]. Especially the work of Collins and Liu [6] emphasizes the im-
portance of the background appearance. They postulate that the feature space that best
distinguishes between object and background is the best feature space to use for track-
ing. The idea of considering the tracking problem as a classification problem between
object and background has lead to further works [1, 2, 27] applying well known clas-
sifiers to the tracking problem. In [1] a tracker is realized by using a Support Vector
Machine which learns off-line to distinguish between the object and the background. The
work most closely related to ours is that of [2]. Again tracking is considered as a binary
classification problem, where an ensemble of weak classifiers is combined into a strong
classifier capturing the idea of AdaBoost for selecting discriminative features for tracking.
To achieve robustness against appearance variations novel weak classifiers can be added
to the ensemble. However, this is done in a batch processing mode using off-line boosting
in a batch manner after new training examples have been collected. Moreover the features
are quite restricted.

The novelty of this paper is to present a real-time object tracking method which is
based on a novel on-line version of the AdaBoost algorithm. Our algorithm performs
on-line updating of the ensemble of features for the target object during tracking and
thus is able to cope with appearance changes of the object. Furthermore, the on-line
trained classifier uses the surrounding background as negative examples in the update and
becomes therefore very robust against the drifting problem [18]. In addition this negative
update allows the algorithm to choose the most discriminative features between the object
and the background. Therefore the method can deal with both appearance variations of the
object and different backgrounds. The algorithm, which uses only grayvalue information
(but can also be extended to color), is able to run in real-time since training is simply done
by updating the model with the positive and negative examples of the current frame.

The reminder of the paper is organized as follows. In Section 2 we introduce the
tracking algorithm and the novel on-line version of AdaBoost for feature selection which
forms the bases of the approach. In Section 3 we show experimental results illustrating
the adaptivity, the robustness and the generality of the proposed tracker.

2 Tracking

The main idea is to formulate the tracking problem as a binary classification task and
to achieve robustness by continuously updating the current classifier of the target object.
The principle of the tracking approach is depicted in Figure 1.

Since we are interested in tracking, we assume that the target object has already been
detected. This image region is assumed to be a positive image sample for the tracker. At
the same time negative examples are extracted by taking regions of the same size as the
target window from the surrounding background. These samples are used to make several
iterations of the on-line boosting algorithm in order to obtain a first model which is already
stable. Note that these iterations are only necessary for initialization of the tracker. The
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Figure 1: The four main steps of tracking by a classisifer. Given an initial position of the
object (a) in time ¢, the classifier is evaluated at many possible positions in a surrounding
search region in frame ¢ 4 1. The achieved confidence map (c) is analyzed in order to
estimate the most probable position and finally the tracker (classifier) is updated (d).

tracking step is based on the classical approach of template tracking [12]. We evaluate the
current classifier at a region of interest and obtain for each position a confidence value.
We analyze the confidence map and shift the target window to the new location of the
maxima. For maximum detection also a mean shift procedure [7] can be used. Using a
motion model for the target object would allow a reduction of the search window. Once
the objects has been detected the classifier has to be updated in order to adjust to possible
changes in appearance of the target object and to become discriminative to a different
background. The current target region is used as a positive update of the classifier while
again the surrounding regions represent the negative samples. As new frames arrive,
the whole procedure is repeated and the classifier is therefore able to adapt to possible
appearance changes and in addition becomes robust against background clutter. Note that
the classifier focuses on the current target object while at the same time tries to distinguish
the target from its surrounding. Apart from this, tracking of multiple objects is feasible
by initializing a separate classifier for each target object.

2.1 On-line AdaBoost

In this section we briefly review the on-line boosting algorithm (for more details see
[11]) which allows to generate classifiers that can be efficiently updated by incrementally
applying samples. For better understanding of this approach we define the following
terms:

Weak classifier: A weak classifier has only to perform slightly better than random guess-
ing (i.e., for a binary decision problem, the error rate must be less than 50%). The
hypothesis 7"“ generated by a weak classifier corresponds to a feature and is ob-
tained by applying a defined learning algorithm.

Selector: Given a set of M weak classifiers with hypothesis "¢ = {hyeak  pieaky,
a selector selects exactly one of those.

hsel (X) — hrvrleak (X) (1)

where m is chosen according to a optimization criterion. In fact we use the esti-
mated error ¢; of each weak classifier h}”e“k € e guch that m = argmin; e;.

Strong classifier: Given a set of N weak classifiers, a strong classifier is computed by a
linear combination of selectors. Moreover, the value conf(-) (which is related to
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Figure 2: Principle of on-line boosting for feature selection.

the margin) can be interpreted as a confidence measure of the strong classifier.

hStrong(x) = sign(conf(x)) 2)
N

conf(x) = Y. o (x) 3
n=1

The main idea of on-line boosting is the introduction of the so called selectors. They
are randomly initialized and each of them holds a seperate feature pool of weak classifiers.
When a new training sample arrives the weak classifiers of each selector are updated. The
best weak classifier (having the lowest error) is selected by the selector where the error of
the weak classifier is estimated from samples seen so far. The complexity is determined
by the number of selectors.

The part which requires most of the processing time is the updating of weak classifiers.
In order to speed up this process, we propose as a modification (similar to [28]) to use a
single “global weak classifier” pool (see Figure 2) which is shared by all selectors instead
of single pools for each of them. The advantage of this modification is that now for each
sample that arrives, all weak classifiers need to be updated only once. Then the selectors
sequentially switch to the best weak classifier with respect to the current estimated A4
and the importance weight is passed on to the next selector. This procedure is repeated
until all selectors are updated. Finally, at each time step an updated strong classifier is
available. In order to increase the diversity of the weak classifiers and to allow changes
in the environment, the worst weak classifier of the shared feature pool is replaced with a
new randomly chosen one.

2.2 Features

We use three different types of features for generating weak hypotheses. Haar-like fea-
tures like Viola and Jones [24], orientation histograms [16, 21, 9] and a simple1 version of
local binary patterns (LBPs) [20]. Note, that the computation of all feature types can be

IBinary patterns using a four-neighborhood (i.e. 2* = 16 patterns) as a 16 bin histogram feature.



done very efficiently using integral images and integral histograms as data structures [21].
This allows to do exhaustive template matching while tracking is still real-time.

To obtain a hypothesis from these features we model the probability distribution
for positive samples and negative samples. Probability density estimation is done by a
Kalman filtering technique. For the classic Haar-like wavelets we use a simple threshold
and a Bayesian decision criterion as learning algorithm. For the histogram based feature
types (orientation histograms and LBPs), we use nearest neighbor learning. Of course,
other types and other learning algorithms can be used to obtain a weak hypotheses. (For
more details see [11])

3 Experiments and Discussion

The experimental section is divided into two parts. First, we perform experiments demon-
strating three specific properties of our tracking approach and second we present results
on public available sequences for comparison to other tracking approaches. Each tracking
task has been initialized by manually marking the target object in the first frame. Track-
ing has been applied to sequences consisting of hundreds of frames. The performance
(speed) depends on the size of the search region which we have defined by enlarging the
target region by one third in each direction (for this region the integral representations are
computed). In our experiments no motion model has been used. We achieve a frame rate
of about 20 fps. The strong classifier consists of 50 selectors and the shared feature pool
provides 250 weak classifiers. All experiments have been done on a standard 1.6 GHz PC
with 256 MB RAM.

3.1 Ilustrations

The goal of this section is to illustrate three properties of the proposed tracker - adaptivity,
robustness and generality. Therefore multiple challenging sequences have been captured
with a static camera having a resolution of 640 x 480.

Adaptivity

To illustrate the adaptivity of the tracker and its capability to select the best features de-
pending on the background, we process a scene where the target object is a small textured
patch, see Figure 3. The goal of the scenario is to show how the proposed on-line feature
selection method can adapt its model to the current tracking problem. Since our approach
looks for suitable features which can best discriminate the object from the background,
we change the background from a homogeneous to a textured one (same texture as the
patch). For evaluation we consider the distribution of the selected feature types (for this
experiment we simply used Haar-like features and LBPs). As we can see in the second
row of Figure 3, the initial choice mainly uses Haar-like features (green) while LBPs (red)
are rather rarely used for handling this tracking task. However, after putting texture to the
background we can see from the plot in the second row, that the features for tracking
the target immediately change. Note that the exchange of features occurs within a quite
short period. As a result LBP features have become much more important for the tracking
task because the Haar-like features are no longer distriminative. Furthermore the target



object is still successful tracked even though the texture of the target is the same as in the
background.
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Figure 3: First row shows the tracked object which is marked with a yellow rectangle.
On-line feature selection for tracking is analyzed by considering the ratio of two selected
feature types - Haar-like features (dashed green) and local binary patterns (solid red).

This experiment shows the importance of on-line learning because we cannot train for
all different backgrounds prior tracking starts. In addition, it shows that there is the need
of different types of features.

Robustness

For successful real-world tracking a tracker must be able to handle various appearance
changes (i.e.: illumination changes, occlusions, out-of-plane rotations, movement) which
can occur in natural scenes. Figure 4 illustrates the behavior of our proposed method in
case of such interferences of the target object. The sequence shows a glass which ini-
tially gets occluded (more than 50%) by a paper, afterwards it is moved behind it with
additional illumination changes which are caused by the occlusion and finally view-point
changes of the target object. The continuous increase of the confidence maximum value
in the initial phase (see row 3, image 1) implies the adapting of the tracker to the target
object with respect to its background. However if the target object changes its appear-
ance or the surrounding background of the target becomes different, the tracker needs
to update his features which is reflected in oscillations of the confidence maximum (see
row 3) and a flattened confidence map (see row 2). Movement of the tracking target is
represented by a shifted peak in the confidence map. To summarize, the tracker is able to
handle all kinds of appearance variations of the target object and always aims at finding
the best discriminative features for discriminating the target object from the surrounding
background. Therefore, the adaptivity is strongly related to the robustness of a tracker.

Generality

In order to demonstrate the generality we use four different sequences with diverse tar-
get objects, see Figure 5. The first sequence, which is depicted in row 1, illustrates the
tracking of a tiny Webcam in a cluttered scene. Even though the target object contains
few texture and changes in pose occur it is robustly tracked. The second sequence (row 2)
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Figure 4: Tracking results on a sequence (row 1) containing a combination of appearance
changes (i.e. illumination, occlusion, movement, out of plane rotation). The behaviour of
the proposed tracker is analyzed considering the confidence map (row 2) and the maxi-
mum confidence value over time (row 3).

shows the results of tracking a face. As we can see from the depicted frames, the pro-
posed approach can cope very well with occlusions which again is the effect of the large
number of local features for tracking. Moreover even large pose variations of the head do
not confuse the tracker showing that the tracker adapts to novel appearances of the target
object. Row 3 illustrates that only little texture of the object is sufficient for tracking. A
glass, having almost no texture, is tracked and again shows the reliability and adaptivity
of the proposed tracker. Row 4 demonstrates the behavior in case of multiple very similar
target objects. As can be seen, even though the objects significantly overlap the trackers
get not confused demonstrating that the classifiers have really learned to distinguish the
specific object from its background. Of course, an overlap over a long duration can cause
adaption to the foreground object and finally leading to failure to track the occluded object
because of the bad updates. However, this can be prevented by using some higher level
control logic.

To summarize, the proposed tracker has the ability to adapt to the appearance of all
kinds of objects by learning a good selection of features. Therefore the tracker’s property
to adapt is useful for both the handling of appearance variations and for selecting features
in order to adapt to any target object.

3.2 Evaluation on public available sequences

Unfortunately up to now there is no public available framework for comparing tracking
techniques. Therefore we decided to process public available sequences, see Figure 6 and
7, which have already been used in other publications for illustrating tracking results ([17,
15]). These sequences contain changes in brightness, view-point and further appearance
variations. The results show that the proposed tracker can cope with all these variations
and results are at least as good as those presented in the according publications.



Figure 5: To illustrate the generality of the proposed method, sequences of four different
objects have been captured. The tracking results show that even objects with almost no
texture (see row 3) can be successfully tracked. Moreover the tracking algorithm can cope
with multiple initialized objects even if they have similar appearance (see row 4).
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Figure 6: These sequences have been provided by Lim and Ross ([17]). The first sequence
shows a person moving from dark towards bright area while making changes in pose and
and partial occlusion of the target region can be seen. In the second row, an animal doll is
moving with large pose, light variations in a cluttered background.
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Figure 7: Experimental results on the sequence provided by Jepson [15]. Again the object
of interest is a face which moves in front of cluttered background and contains variations
in appearance.

4 Conclusion

In this paper we have proposed a robust and generic real-time tracking technique (about
20 fps using a standard 1.6 GHz PC with 512 MB RAM) which considers the tracking
problem as a binary classification problem between object and background. Most ex-
isting approaches construct a representation of the target object before the tracking task
starts and therefore utilize a fixed representation to handle appearance changes during
tracking. However, our proposed method does both - adjusting to the variations in ap-
pearance during tracking and selecting suitable features which can learn any object and
can discriminate it from the surrounding background. The basis is an on-line AdaBoost
algorithm which allows to update features of the classifier during tracking. Furthermore
the efficient computation of the features allows to use this tracker within real-time appli-
cations. Finally, since the tracker is based on a classifier approach now there are several
new venues of research like how we can construct a more generic model (like a detector)
of the target object during tracking.
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