
On-line Boosting and Vision ∗

Helmut Grabner and Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology
{hgrabner, bischof}@icg.tu-graz.ac.at

Abstract

Boosting has become very popular in computer vision,
showing impressive performance in detection and recog-
nition tasks. Mainly off-line training methods have been
used, which implies that all training data has to be a pri-
ori given; training and usage of the classifier are separate
steps. Training the classifier on-line and incrementally as
new data becomes available has several advantages and
opens new areas of application for boosting in computer
vision. In this paper we propose a novel on-line AdaBoost
feature selection method. In conjunction with efficient fea-
ture extraction methods the method is real time capable. We
demonstrate the multifariousness of the method on such di-
verse tasks as learning complex background models, visual
tracking and object detection. All approaches benefit sig-
nificantly by the on-line training.

1. Introduction

Boosting has been successfully used in a wide variety of
machine learning task and applied to computer vision prob-
lems. In this paper we focus on a specific boosting algo-
rithm, discrete AdaBoost for classification. AdaBoost has
been analyzed carefully (e.g. [27]) and tested empirically
by many researchers. For instance, following the overview
given in [26], boosting has been used for text recognition,
text filtering, routing, “ranking” problems, learning prob-
lems in natural language processing, medical diagnostic and
customer monitoring and segmentation. Various variants of
Boosting have been developed (e.g. Real-Boost [9], LP-
Boost [7]). Boosting is strongly related to support-vector
machines (SVM) [23]. For SVM good results for vision

∗The project results have been developed in the MISTRAL Project
which is financed by the Austrian Research Promotion Agency
(www.ffg.at). This work has been sponsored in by the Austrian Federal
Ministry of Transport, Innovation and Technology under P-Nr. I2-2-26p
VITUS2 and by the Austrian Joint Research Project Cognitive Vision un-
der projects S9103-N04 and S9104-N04, the EC funded NOE MUSCLE
IST 507572.

problems have been reported (e.g. [2]), though on-line ver-
sions exist [28] their main drawback is the computational
complexity.

In this paper we use boosting for feature selection. This
has been initially introduced by Tieu and Viola [29] in
the context of image retrieval. Feature selection and fea-
ture combination is of high interest to many researchers
in machine learning [4]. Compared to other approaches,
boosting has many advantages, therefore it is quite popu-
lar [24]. The seminal work of Viola and Jones [31] which
applied boosting to robust and fast object detection tasks,
paved the way of boosting in the area of computer vision,
e.g. [18, 15, 30, 34].

All of the above mentioned approaches work off-line or
in a “pseudo-on-line” batch processing mode (i.e. collecting
a set of training examples and then run the off-line boosting
algorithm). However, off-line boosting limits the usage for
many applications. For example, tracking requires adaptive
techniques for adjusting to possible variations of the target
object over time. This can only be handled with adaptive
methods which are able to incrementally update their repre-
sentations. Thus there is an essential need for on-line algo-
rithms that are able to learn continuously.

In this paper we introduce a novel on-line boosting based
feature selection framework. Javed et al. [12] proposes on-
line boosting in a co-training framework for object detec-
tion. In their work a classifier is first trained off-line on
a generic scenario, which is later adapted and refined by
on-line boosting. Our work is much more general which
allows to perform on-line feature selection using boosting.
Therefore we can tackle a large variety of real-time tasks.
Second, we can manage very large feature pools at reduced
computational costs. This gives the feasibility to apply our
algorithm to many different real-time applications.

The remainder of the paper is organized as follows. In
Section 2 we introduce the on-line algorithm, provide some
analysis and draw relations to the off-line case. In Sec-
tion 3 multiple applications (namely object detection, ob-
ject tracking and background modeling), using this novel
on-line method, are demonstrated. Finally, we present some

conclusion and further work.

2. On-line feature selection
First, we briefly review the off-line boosting approach

and how it is used for feature selection.We proceed by in-
troducing on-line boosting. Finally, we present our novel
on-line boosting for feature selection algorithm.

2.1. Off-line boosting

Boosting is a general method for improving the accuracy
of any given learning algorithm. This is done by combining
(a weighted voting) N hypotheses which have been gener-
ated by repeating training with different subsets of training
data. Boosting transforms a weak learning algorithm into a
strong one. Let us first define some terms:

Weak classifier: A weak classifier has only to perform
slightly better than random guessing (i.e., for a binary
decision task, the error rate must be less than 50%).
The hypothesis hweak generated by a weak classifier
is obtained by applying a learning algorithm.

Strong classifier: Given a set of N weak classifiers, a
strong classifier is computed as linear combination of
the weak classifiers. The value conf(·) (which is re-
lated to the margin) can be interpreted as a confidence
measure.

hstrong(x) = sign(conf(x)) (1)

conf(x) =
N∑

n=1

αn · hweak
n (x) (2)

We focus on the discrete AdaBoost (adaptive Boosting)
algorithm [9] introduced by Freund and Shapire, that re-
weights the training samples instead of re-sampling them.
The basic algorithm works as follows: Given a training set
X = {〈x1, y1〉, ..., 〈xL, yL〉 | xi ∈ Rm, yi ∈ {−1,+1}}
with positive and negative labeled samples and an initial
uniform distribution p(xi) = 1

L over the examples. A weak
classifier hweak is trained based on X and p(x). Based on
the error en the weak classifier hweak

n gets assigned a weight
αn = 1

2 · ln
(

1−en

en

)
. p(x) is updated such that the proba-

bility increase for the samples that are misclassified. If the
sample is classified correctly the corresponding weight is
decreased. Therefore, the algorithm focuses on the difficult
examples. The process is repeated, and at each boosting
iteration a new weak hypothesis is added, until a certain
stopping condition is met (e.g. a given number of weak
classifiers are trained).

Freund and Schapire [9] proved strong bounds on the
training and generalization error of AdaBoost. For the case
of binary classification the training error drops exponen-
tially fast with respect to the number of boosting rounds

N (i.e. number of weak classifiers). Schapire et al. [27]
showed that boosting maximizes the margin and proved that
larger margins for the training set are translated to superior
upper bounds on the generalization error.

2.2. Off-line boosting for feature selection

Tieu and Viola [29] introduced boosting methods for fea-
ture selection. The idea is that each feature corresponds to
a single weak classifier and boosting selects from the fea-
tures. A pool of possible features F is given. Since this fea-
ture pool can be very large, for computational reasons the
algorithm focuses on a subset Fsub = {f1, ..., fk} ⊆ F .

Training proceeds in a similar manner to standard boost-
ing. In each iteration n the algorithm selects one new fea-
ture and adds it (with the corresponding voting factor) to the
ensemble. All features are evaluated and the best one is se-
lected which forms the weak hypothesis hweak

n , the weight
αn is set according to the error of hweak

n . Finally, a strong
classifier hstrong is computed as weighted linear combina-
tion of the weak classifiers. As already stated the training
error drops exponentially fast over the boosting iterations,
which are now equivalent to the number of selected fea-
tures.

2.3. On-line boosting

To obtain an on-line boosting algorithm (i.e. an algo-
rithm that operates on a single example and discards it after
updating), each of the boosting steps described above has to
be done on-line. On-line updating the weak classifiers is not
the problem because many on-line learning algorithms for
generating a hypothesis can be used. Also the estimation of
the corresponding voting-weights is straight forward, if we
know the estimated error of the weak classifiers (which we
do). The crucial step is the computation of the weight dis-
tribution for the samples, because we do not know a priori
the difficulty of a sample (i.e., we do not know if we have
seen the sample before).

We use ideas proposed by Oza et al. [21] and the ex-
perimental comparisons he did [20] (also some other ap-
proaches exist, e.g. for the Arc-x4 algorithm [8]). The basic
idea is that the importance (difficulty) of a sample can be
estimated by propagating it through the set of weak classi-
fiers. One can think of this, as modeling the information
gain with respect to the first n classifier and code it by the
importance weight λ for doing the update of the n + 1-th
weak classifier.

Oza has proved, if off-line and on-line boosting are given
the same training set, then the weak classifiers (Naive Bayes
classifiers) returned by on-line boosting converges statisti-
cally to the one obtained by off-line boosting as the number
of iterations N → ∞. Therefore, for repeated presenta-
tion of the training set on-line boosting and off-line boost-

ing deliver the same result. For details see the PhD-Thesis
of Oza [19].

The on-line algorithm requires that the number of weak
classifiers is fixed at the beginning. Note the interchange
of roles. In the off-line case all samples are used to update
(and select) one weak classifier, whereas in the on-line case
one sample is used to update all weak classifiers and the
corresponding voting weight.

2.4. On-line boosting for feature selection

The approach of Oza is not directly applicable to fea-
ture selection. The essential novelty of our approach is, that
we propose an on-line boosting algorithm for solving the
feature selection task. For this purpose we need a further
concept.

Selector: Given a set of M weak classifier with hypoth-
esis Hweak = {hweak

1 , ..., hweak
M }, a selector selects

exactly one of those.

hsel(x) = hweak
m (x) (3)

where m is chosen according to a optimisation crite-
rion. In fact we use the estimated error ei of each weak
classifier hweak

i ∈ Hweak such that m = arg mini ei.

Note, that the selector can interpreted as a classifier (he
switches between the weak classifiers). Training a selec-
tor means that each weak classifier is trained (updated) and
the best one (with the lowest estimated error) is selected.
Similar to the off-line case, the weak classifiers Hweak cor-
respond to features, i.e. the hypotheses generated by the
weak classifier is based on the response of the feature. The
selectors can therefore select from a subset of M features
Fsub = {f1, ..., fM | fi ∈ F} of the global feature pool.

In summary: The main idea is to apply on-line boosting
not directly to the weak classifiers but to the selectors.

The overall principle is depicted in Fig. 1 and in Algo-
rithm 2.1. In particular, the new on-line AdaBoost training
for feature selection works as follows: First, a fixed set of
N selectors hsel

1 , .., hsel
N is initialized randomly, each with

its own feature poolFn. When a new training sample 〈x, y〉
arrives the selectors are updated. This update is done with
respect to the importance weight λ of the current sample1.
For updating the weak classifiers, any on-line learning algo-
rithm can be used, but we employ a standard EM technique
to estimate the probability distributions of positive and neg-
ative samples and generate a hypothesis (see Section 3 for
more details). The weak classifier with the smallest error is
selected by the selector

arg min
m

(en,m), en,m =
λwrong

n,m

λcorr
n,m + λwrong

n,m
(4)

1Either λ is used as a learning rate in the learning algorithm or by k-
times repeated updating k ∼ Poisson(λ) as proposed by Oza.

Figure 1. Novel on-line boosting for feature selection.

en,m is the error of the m-th weak classifier hweak
n,m in the

in the n-th selector, estimated from the weights of correctly
λcorr

n,m and wrongly λwrong
n,m classified examples seen so far.

Finally, the corresponding voting weight αn and the impor-
tance weight λ of the sample are updated and passed to the
next selector hsel

n+1.
In order to increase the diversity of the classifier pool Fn

for the selector hsel
n and to adapt to changes in the environ-

ment the worst weak classifier is replaced by one randomly
chosen from the feature pool F .

This procedure is repeated for all selectors. The num-
ber of selectors is constant similar to the number of weak
classifiers in Oza’s on-line algorithm. A strong classifier is
obtained by linear combination of selectors.

hstrong(x) = sign
(N∑

n=1

αn · hsel
n (x)

)
(5)

In contrast to the off-line version a classifier is available at
any time.

2.5. Discussion

We point out the differences and relations between the
off-line and the on-line algorithm and take a look at the ad-
vantages and disadvantages. The main difference is that in
the on-line case only the information from one training ex-
ample is used and in the off-line case the training set is fixed.

From the algorithm’s point of view, in the off-line case at
each boosting iteration a new weak classifier is created and
thus a feature from the feature pool F is selected and added
it to the ensemble. A drawback for the on-line algorithm,
is that the discriminative complexity of the classifier is lim-
ited, because the number of weak classifiers is fixed (since
also the number of selectors is fixed). However, the fea-
tures selected within a selector and also the voting-weight

Algorithm 2.1 On-line AdaBoost for feature selection
Require: training example 〈x, y〉, y ∈ {−1,+1}
Require: strong classifier hstrong (initialized randomly)
Require: weights λcorr

n,m , λwrong
n,m (initialized with 1)

initialize the importance weight λ = 1
// for all selectors
for n = 1, 2, .., N do

// update the selector hsel
n

for m = 1, 2, ..,M do

// update each weak classifier
hweak

n,m = update(hweak
n,m , 〈x, y〉, λ)

// estimate errors
if hweak

n,m (x) = y then
λcorr

n,m = λcorr
n,m + λ

else
λwrong

n,m = λwrong
n,m + λ

end if
en,m = λwrong

n,m

λcorr
n,m +λwrong

n,m

end for

// choose weak classifier with the lowest error
m+ = arg minm(en,m)
en = en,m+ ; hsel

n = hweak
n,m+

if en = 0 or en > 1
2 then

exit
end if

// calculate voting weight
αn = 1

2 · ln
(

1−en

en

)
// update importance weight
if hsel

n (x) = y then
λ = λ · 1

2·(1−en)
else

λ = λ · 1
2·en

end if

// replace worst weak classifier with a new one
m− = arg maxm(en,m)
λcorr

n,m− = 1; λwrong
n,m− = 1;

get new hweak
n,m−

end for

can change over time. In addition, the feature pool Fn ⊆ F
of each selector is adapted by replacing the worst feature
(weak classifier). If the process is running for a long time,

a lot of features are processed and evaluated but still only a
small number of features is sufficient for updating the selec-
tor. Since in the on-line case learning continues, the model
will continuously improve by exploring more features and
training data.

The aspect of real-time is important for on-line learning.
Our proposed algorithm is easy to implement and runs very
fast. Both speed and memory are O(M ·N) assuming that
all N selectors include the same number of M weak classi-
fiers. The main computational effort is spend for updating
the weak classifiers, which depends on the learning algo-
rithm and the time to calculate the feature value. The time
consumed by our framework is negligible. In order to de-
crease computation time we use a method similar to Wu et
al. [33]. Assuming all feature pools in the selectors are the
same F1 = F2 = ... = FM , then we can update all cor-
responding weak classifiers only once and so the selectors
choose only the best feature according to λ. This speeds up
the process considerably while only slightly decreasing the
performance.

3. Applications and Experiments
In this paper we use the standard Haar-like features from

Viola and Jones [31] and in addition orientation histograms
(with 16 bins) similar to [13, 6] and a simple version (4-th
neighborhood) of local binary patterns (LBP) [17] as fea-
tures. Note that we use integral images and integral his-
tograms [22] as efficient data structures, which allow a very
fast calculation of all these feature types. All our experi-
ments shown bellow run in real time on a standard PC (Intel
Pentium 1.6 GHz with 512 MB RAM).

On-line learning for obtaining a weak classifier hweak
j

for a feature j, where fj(x) evaluates this feature on the
image x can be implemented straight forward for these
feature types. We build a model by estimate the proba-
bility P (1|fj(x)) via a Gauss distribution with mean µ+

and standard deviation σ+ for positive labeled samples and
P (−1|fj(x)) by N (µ−, σ−) for negative labeled samples.
For this purpose we incrementally estimate the mean and
variance by a Kalman filtering approach [32]. We build a
simple state space model for estimation the (constant) mean
and achieve µt = µt−1 + vt and σ2

t = σ2
t−1 + vt for the

variance. vt ∼ N (0, R) is a random noise processes with
variance R. In our experiments we set R = 0.01 and fur-
thermore the initial state P0 = 1000, µ0 = 0 and σ2

0 = 0.
The following update equations for the adaptive estimation
can be derived:

Kt = Pt−1/(Pt−1 + R) (6)
µt = Kt · fj(x) + (1−Kt) · µt−1 (7)
σ2

t = Kt · (fj(x)− µt)2 + (1−Kt) · σ2
t−1 (8)

Pt = (1−Kt) · Pt−1 (9)

Figure 2. Evaluation of the background model. Each thin blue rectangle in the input image (first row) corresponds to classifiers which
are updated in order to learn the “allowed” changes. The regions which can not be modeled by the learned classifiers are related to the
foreground (second row).

As hypotheses for the classical Haar Wavelets we use
either a simple threshold

hweak
j (x) = pj · sign(fj(x)− θj) (10)

θj = |µ+ + µ−|/2, pj = sign(µ+ − µ−) (11)

or a Bayesian decision criterion, based on the estimated
Gaussian probability density function g(x|µ, σ)

hweak
j (x) = sign(P (1|fj(x))− P (−1|fj(x))) (12)

≈ sign(g(fj(x|µ+, σ+)− g(fj(x)|µ−, σ−)) (13)

For the histogram based features (orientation histograms
and LBP), we use nearest neighbor learning with a distance
function D. The cluster centers for positive pj and negative
nj samples are learned (estimated) by applying the Kalman
filter technique to each bin.

hweak
j (x) = sign(D(fj(x),pj)−D(fj(x),nj)) (14)

The whole feature pool F contains an enormous amount of
possible features because of the highly over complete rep-
resentation (each feature prototype can appear at different
position and scale). In our experiments the local feature
pool Fn used by the n-th selector is very small, in particu-
lar we use |Fn| = 250 and N = 50 selectors. In the fol-
lowing we show how the novel on-line boosting algorithm
can be used for such diverse tasks as background modeling,
tracking and object detection. In all three cases the on-line
learning capability is required.

3.1. Background model

A basic task in surveillance applications is background
subtraction. One needs a robust and flexible background
model. Based on the idea of a block based background
model [10] (which contains also a good overview of related
work), we propose a classifier based background model.
The basic idea is to partition the image in small (overlap-
ping) blocks, each block contains a classifier, which classi-
fies the region as foreground or background.

Where we define as background everything that is sta-
tistical predictable in the image. Therefore everything, that
can not be predicted is foreground. This definition allows us
to describe dynamic (multi modal) background (e.g. flash-
ing light, moving leaves in the wind, flag waves, etc.). A
robust background model has to adapt to dynamic back-
grounds and must be sensitive to corresponding foreground
objects. Therefore on-line algorithms are required.

First, in the initial period a separate classifier is build for
each patch by considering all frames as positive examples.
Later on, the algorithm analyzes the image and does positive
updates according to a given policy. In our experiment we
use following very simple policy: We update a classifier if
the normalized confidence is positive but less than one half.

0 <
conf(x)∑N

n=1 αn

≤ 1
2

(15)

Since we do not have negative examples we treat the
problem as a one-class classification problem, therefore
only positive samples for updating are used. The classifier
models only the background (including dynamic changes),
everything else belongs to a foreground object. We can
calculate the negative distribution for each feature directly
without learning. We model the gray value of each pixel
as a uniformly distributed with mean 128 and variance 2562

12
(for an 8 bit image). Applying standard statistic operations
the parameters of the negative distribution µ− and σ− of
Haar features can be computed easily. In the case of an
orientation histogram feature, the negative cluster nj con-
sists of equally distributed orientations. The characteris-
tic negative cluster for a 16 bin LBP-feature is given by
nj = 1

50 · [6, 4, 4, 1, 4, 1, 1, 4, 4, 1, 1, 4, 1, 4, 4, 6] for the bi-
nary patterns [00002, 00012, 000102..., 11112]2.

An experimental example is shown in Figure 2 for a clut-
tered desk scenario. The first row shows the input sequence

2These numbers are obtained by a lengthly calculation assuming equal
probability of all patches.

Figure 3. Experimental results when applying our on-line feature selection method to tracking. The initial marked glass is robustly tracked
(occlusions and changes in appearance) over the whole image sequence (first row). The second row shows the maxima of the confidence
map over time.

Figure 4. Robust tracking of two similar objects which are severely occluded.

overlapped with blue rectangles indicating classifiers which
are currently updated. Those classifiers that give a negative
response, and by definition this are foreground objects, are
depicted in the second row. Added, removed or shifted ob-
jects in the scene are detected very well. Note, that during
learning of this sequence the screen saver was active, there-
fore this dynamic background has been correctly modeled
as background by the classifiers. But, when we weak up the
computer (4-th column) the change is detected.

On a standard quarter PAL (384×288) resolution a fram-
erate of about 15-20 fps is achieved. Each sub-classifier
contains 30 selectors (each can choose from 250 weak clas-
sifier) and analyzes a 20 × 20 image patch with 50% over-
lapp.

3.2. Tracking

This work was inspired by Avidan [3]. The main idea
is to formulate the tracking task as a classification problem
and to continuously update the current classifier which rep-
resents the object to optimally discriminate it from the cur-
rent background [5].

The principle is depicted in Figure 5. We assume that we
have already detected the object in the gray-scale image and
therefore have an initial tracking region. We start, build-
ing an initial classifier using the marked region as positive
samples and patches in the local neighborhood as negative
samples. At time t + 1 we evaluate the current classifier
in a region of interest around the previous detection (in fact
we could also use a motion model to predict the new po-
sition). For each classified patch we receive a confidence

Figure 5. Principle of tracking with a classifier

value which is entered in a confidence map. This confi-
dence map is analyzed and the tracking window is shifted
to the best possible position3. We update the classifier and
continue the process. This update has several advantages,
first we learn to optimally discriminate the object from the
background, and second the object can change its appear-
ance which will be learned by the boosting approach. In
addition depending on the update parameters the algorithm
is robust to occlusions. The on-line update capability is the
big advantage over support vector or relevance vector track-
ing methods [2].

3At the moment we simply shift it to the maximum, but also a more
powerful method, like a mean shift approach, can be used. But even our
simple strategy shows pretty good results that are adequate for demonstrat-
ing the on-line boosting method.

Figure 3 demonstrates the tracker, the first row shows
the tracking of the object over time. The second row de-
picts maximal confidence over time. At the beginning
nothing changes and the confidence increases, because on-
line boosting finds better and better features for describing
the object. Later, when we occlude the object, the confi-
dence decreases, however the object is correctly tracked as
it moves.

Again, this is only possible since we can perform a very
fast on-line update of the strong classifier modeling the ob-
ject. Tracking different kinds of objects is feasible because
we learn a specific model based tracker. Furthermore also
the tracking of multiple objects is possible. For example,
a face detector can initialize a tracker for each face. The
tracker will learn the best representation for each instance
(a more specific model). See Figure 4 for an illustration
with boxes which are similar and occlude each other, but
nevertheless the tracker never gets confused.

The performance depends on the size of the search re-
gion. We simply search on a region twice as large as the last
known position. We achieve an update rate of more than 20
fps. The strong classifier contains 50 selectors (each can
choose from 250 weak classifiers).

3.3. Object Detection

Based on the classical work from Viola and Jones [31]
many authors perform object detection by off-line boosting.
The trained classifier (detector) is scanned over the whole
gray-scale image at multiple locations and scales. This has
to be done for each object.

In this application there is no need for on-line learning.
But on-line learning becomes very interesting (and more-
over essential) when one intends to continuously learn a
model. This is the case for active learning and image re-
trieval applications [11, 1] where human input is used to
update the classifier (e.g. a support vector machine).

Another example where the on-line algorithm is useful is
learning detections by either co-training [14], or the meth-
ods proposed by Nair and Clark [16] or Roth et al. [25].
There the basic idea is that other algorithms provide labels
that can be used for updating the classifier. By a combi-
nation of different methods one can train detectors without
hand labeling. Figure 6 depicts various stages of a person
detector learning process. A motion model and a robust
PCA algorithm is used to train the on-line AdaBoost clas-
sifier. One can see that the person detector is significantly
improving as the training continues. Figure 7 demonstrates
the same algorithm applied to cars.

4. Conclusion
In this paper we have introduced a novel on-line algo-

rithm for feature selection based on boosting. As we have

(a)

(b) (c) (d)

Figure 6. Performance of the detector trained with conservative
learning framework (a) and particular results at beginning (b), af-
ter 300 learning updates (c) to the final version after about 1200
updates (d). Taken from [25]

Figure 7. Results obtained by the final car classifier using conser-
vative learning.

demonstrated on-line learning and on-line feature selection
is essential for a wide variety of computer vision problems.
Three fundamental vision applications, namely background
modeling, tracking and active learning for object detections,
have been presented. Due to the efficient computation of the
features based on integral images, all presented applications
run in real-time. In addition, we have already achieved im-
pressive results using very simply strategies, which can be
further improved by using more sophisticated ones. The ex-
periments show that various inevitable variations that occur
in natural scenes (e.g., changes in illumination, changes in
viewpoint, reflectance) can only be adequately handled by
on-line learning methods adjusting to these changes.

The paper presents only a subset of possible applications
where the proposed on-line feature selection algorithm can
be used. Moreover we have started to combine these tasks
more closely, i.e. updating the detector while tracking and
training a recognizer module, all requiring on-line capabili-
ties.

References
[1] Y. Abramson and Y. Freund. SEmi-automatic VIsual LEarn-

ing (SEVILLE): Tutorial on active learning for visual object
recognition. In Proc. CVPR, 2005.

[2] S. Avidan. Support vector tracking. PAMI, 26:1064–1072,
2004.

[3] S. Avidan. Ensemble tracking. In Proc. CVPR, volume 2,
pages 494–501, 2005.

[4] A. Blum and P. Langley. Selection of relevant features and
examples in machine learning. Artificial Intelligence, 97(1-
2):245–271, 1997.

[5] R. Collins, Y. Liu, and M. Leordeanu. Online selection of
discriminative tracking features. PAMI, 27(10):1631–1643,
Oct. 2005.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proc. CVPR, volume 1, pages 886–893,
2005.

[7] A. Demiriz, K. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. Machine Learn-
ing, 46:225–254, 2002.

[8] A. Fern and R. Givan. Online ensemble learning: An empir-
ical study. Machine Learning, 53(1-2):71–109, 2003.

[9] Y. Freund and R. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Jour-
nal of Computer and System Sciences, 55(1):119–139, 1997.

[10] M. Heikkil, M. Pietikinen, and J. Heikkil. A texture-based
method for detecting moving objects. In Proc. 15th BMVC,
pages 187–196, 2004.

[11] S. Hoi and M. Lyu. A semi-supervised active learning frame-
work for image retrieval. In Proc. CVPR, volume 2, pages
302–309, 2005.

[12] O. Javed, S. Ali, and M. Shah. Online detection and clas-
sification of moving objects using progressively improving
detectors. In Proc. CVPR, pages 695–700, 2005.

[13] K. Levi and Y. Weiss. Learning object detection from a small
number of examples: The importance of good features. In
Proc. CVPR, pages 53–60, 2004.

[14] A. Levin, P. Viola, and Y. Freund. Unsupervised improve-
ment of visual detectors using co-training. In Proc. 9th
ICCV, pages 626–633, 2003.

[15] Y. Li and W. Ito. Shape parameter optimization for ad-
aboosted active shape model. In Proc. 10th ICCV, 2005.

[16] V. Nair and J. Clark. An unsupervised, online learning
framework for moving object detection. In Proc. CVPR,
2004.

[17] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. PAMI, 24(7):971–987, 2002.

[18] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hy-
potheses and boosting for generic object detection and recog-
nition. In Proc. 8th ECCV, volume 2, pages 71–84, 2004.

[19] N. Oza. Online Ensemble Learning. PhD thesis, University
of California, Berkeley, 2001.

[20] N. Oza and S. Russell. Experimental comparisons of on-
line and batch versions of bagging and boosting. In Proc.
7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2001.

[21] N. Oza and S. Russell. Online bagging and boosting. In Proc.
Artificial Intelligence and Statistics, pages 105–112, 2001.

[22] F. Porikli. Integral histogram: A fast way to extract his-
tograms in cartesian spaces. In Proc. CVPR, volume 1, pages
829–836, 2005.

[23] G. Rätsch, B. Schökopf, S. Mika, and K. Müller. Svm and
boosting: One class. 2000.

[24] D. Redpath and K. Lebart. Observations on boosting feature
selection. In Proc. Multiple Classifier Systems, pages 32–41,
2005.

[25] P. Roth, H. Grabner, D. Skočaj, H. Bischof, and
A. Leonardis. On-line conservative learning for person de-
tection. In Proc. Workshop on VS-PETS, 2005.

[26] R. Schapire. The boosting approach to machine learning: An
overview. In Proc. MSRI Workshop on Nonlinear Estimation
and Classification, 2001.

[27] R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting
the margin: A new explanation for the effectiveness of vot-
ing methods. In Proc. International Conference on Machine
Learning, pages 322–330, 1997.

[28] D. Tax and P. Laskov. Online SVM learning: From classifi-
cation to data description and back. In Proc. Neural Network
and Signal Processing, pages 499–508, 2003.

[29] K. Tieu and P. Viola. Boosting image retrieval. In Proc.
CVPR, pages 228–235, 2000.

[30] A. Torralba, K. Murphy, and W. Freeman. Sharing features:
Efficient boosting procedures for multiclass object detection.
In Proc. CVPR, volume 2, pages 762–769, 2005.

[31] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. CVPR, volume I, pages
511–518, 2001.

[32] G. Welch and G. Bishop. An introduction to the kalman fil-
ter. Technical report, UNC-CH Computer Science Technical
Report 95041, 1995.

[33] J. Wu, J. Rehg, and M. Mullin. Learning a rare event de-
tection cascade by direct feature selection. In Proc. NIPS,
2003.

[34] P. Yang, S. Shan, W. Gao, S. Li, and D.Zhang. Face recogni-
tion using Ada-boosted Gabor features. In Proc. Conference
on Automatic Face and Gesture Recognition, pages 356–361,
2004.

