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Abstract. We propose a considerably faster approximation of the well
known SIFT method. The main idea is to use efficient data structures
for both, the detector and the descriptor. The detection of interest re-
gions is considerably speed-up by using an integral image for scale space
computation. The descriptor which is based on orientation histograms, is
accelerated by the use of an integral orientation histogram. We present an
analysis of the computational costs comparing both parts of our approach
to the conventional method. Extensive experiments show a speed-up by
a factor of eight while the matching and repeatability performance is
decreased only slightly.

1 Introduction

In the last few years we have witnessed an explosion of object recognition meth-
ods based on the detection of local key-points and construction of local pho-
tometric descriptors around these key-points (e.g. [1, 2, 3, 4]). The basic idea
of these approaches is to first detect salient structures in images (e.g., corners,
high entropy regions, scale space maxima, etc.) and to construct from the re-
gion or its surrounding a discriminative description which is used for matching.
The requirement is that the structures can be re-detected with high reliability
and that the descriptor is robust (e.g. to illumination changes) and possesses
certain invariance properties (e.g. affinely invariant). The big advantage of these
approaches is that they do not require a segmentation of the image and due to
the local nature they are robust to occlusions.

Local approaches have demonstrated considerable success in a variety of ap-
plications, like recognition of objects [1], wide-base line stereo [4], robot nav-
igation [5], image retrieval [6, 7], building of panoramas [8], etc. Probably the
most popular and widely used local approach is the DoG detector with the
SIFT descriptor as proposed by Lowe [1]. SIFT has been used with success
in all of the above mentioned application areas. Evaluations and comparison
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(e.g. [9]) demonstrate the excellent performance of the method compared to
other approaches. The DoG detector detects blobs in the Laplacian scale space.
The SIFT descriptor is basically a histogram (in fact 16 concatenated ones) of
gradient orientations of the normalized (with respect to scale and orientation)
DoG region. One key issue for its success is that DoG points and SIFT are
normalized with each other and can be computed fast.

Due to the high popularity of SIFT, it is no surprise that several variants and
extensions of SIFT have been proposed. For example Ke and Sukthankar pro-
posed the so called PCA-SIFT [10] that applies Principal Components Analysis
(PCA) to the normalized gradient patch. The Gradient location and orientation
histogram (GLOH) [9] changes SIFTs location grid and uses PCA to reduce
the size of SIFT. The primary focus of these extensions is to gain improved
performance.

In this paper we propose a modified SIFT method for recognition purpose.
Our primary motivation is to significantly speed up the SIFT computation while
at the same time keep the excellent matching performance. We demonstrate
that by using approximations (mainly employing integral images) both the DoG
detector (see section 2) and the SIFT-descriptor (see section 3) we can speed-up
the SIFT computation by at least a factor of eight compared to the binaries
provided by Lowe. Extensive experimental evaluations (see section 4) show that
the loss in matching performance is negligible.

2 DoG Detector

In order to detect scale invariant key-points Lowe suggests to repeatedly smooth
the input image and identify key locations in scale space. In order to detect even
very small scales Lowe extends this approach and proposes to double the input
image before building the scale space. The different scale levels are produced by
recursive filtering with a variable-scale Gaussian kernel. A local maxima search
is finally applied to the Difference-of-Gaussian images which can be computed
of adjacent scale images, in order to detect key-points in scale space.

To accelerate this approach we propose several approximations and changes,
see Table 1. The key idea of our method is to considerably reduce the costs for
computing the scale space by using Difference-of-Mean (DoM ) images instead
of Difference-of-Gaussians (DoG). This DoM images can be computed very effi-
ciently by using a box filter in combination with an integral image as introduced

Table 1. Major differences between Lowe’s detector [1] and our proposed approach

SIFT Fast approximated SIFT
image doubling -
- calculate integral image
DoG scale space DoM scale space
post-processing -
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by Viola and Jones [11] (capturing the main idea of [12]). Once the integral im-
age is computed, it allows to compute the mean within a rectangular region in
constant time independent of the size of the region. This property allows fast box
filtering and can be used for linear sampling of the scale axis which is realized by
successively increasing the size of the filter kernel. Adjacent scale space images
are subtracted and a local maxima search is applied to the Difference-of-Mean
images in order to detect key-points. For a reliable detection of key-points at all
scales it is important to normalize the DoM response with

sensitivity ·
(
1 − s2

1

s2
2

)
(1)

where s1, s2 corresponds to the size of the small and larger box filter, respectively.
The parameter sensitivity captures the minimal contrast of the mean gray values
of the inner region (s1) and the outer region (s2 − s1) and can be used to adjust
the sensitivity of the detector. Since experiments with DoG indicate that small
scales cannot be reliably matched we skip the doubling of the image size, which
again provides a significant speed-up. Once the key-points have been detected we
do not make any further post-processing like an accurate key-point localization
because due to the use of integral images we have already pixel accuracy at each
scale. But note that the accuracy of the obtained points is not as precise as with
the DoG, nevertheless the detected points are good for recognition tasks but less
suitable for geometric tasks like estimation of the fundamental matrix.

Fig. 1. Comparison of the DoM key-points (left) detected by our approach to DoG
key-points (right) detected by the approach of Lowe

2.1 Computational Costs

The box filtering approach using integral images is depicted in Algorithm 1.
Once the integral image is pre-computed which takes 2 additions for each image
pixel, a single box filter response can be computed, independent of its size, with
4 memory accesses, 3 additions and a single multiplication which is needed for
normalizing the box region. In Table 2 which has been adapted from [13], we
compare the box filtering approach to other commonly used Gaussian filtering
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Algorithm 1. Integral image computation
// pre-computation
for each image point do

Propagate integral image {1 addition}
Increase value {1 addition}

end for
// apply box filter with a given kernel size
for each image point do

Compute intersection {3 addition}
Normalize {1 multiplication}

end for

Table 2. Comparison of various filtering techniques (calculations per pixel)

Filter technique Additions Multiplications
2D-Gauss N2 N2 − 1
Separated Gauss 2 · N − 2 N + 2
Recursive Gauss 6 14
FFT 2 · log(W · H) 2 · log(W · H) + 1
Box filter 2 + 3 1

techniques. Simple 2-D convolution is the slowest one since the complexity for
each pixel is O(N2), where N corresponds to the filter size. Much more efficient
is to make use of the separability of the Gaussian function which allows convo-
lution by applying two passes of the 1-D function in the horizontal and vertical
directions. This leads to linear costs in the kernel size N . Other methods like
FFT are independent with respect to the filter kernel size but depend on the
size of the input image W ×H . However, as can be seen in Figure 2(a), the com-
putational costs are higher than for the separable Gaussian for a kernel size of
7×7 (as proposed by Lowe in [14]). A similar result holds for recursive Gaussian
filters which allow convolution in constant time but are still computationally
more demanding for small filter kernels.

3 SIFT Descriptor

Reliable matching of key-points is performed by feature vectors generated from
their local neighborhoods. Lowe suggests to use the gradient information around
a key-point. Initially a consistent orientation is assigned to the key-point such
that the descriptor can be represented relative to this orientation, thereby achiev-
ing rotation invariance. Gradients within a circular region are used to compute
an orientation histogram, and local maxima in the histogram are used as char-
acteristic orientations.

To obtain a descriptor Lowe proposes to divide the surrounding region into
4 × 4 sub-patches. From each sub-patch an orientation histogram with 8 bins
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is computed and concatenated to form a single feature vector. Since orientation
histograms form the basic computation for the descriptor this leads to the idea
to use integral histograms [15]. Integral histograms are an extension of integral
images using for each histogram bin (e.g. orientation) a separate integral image.
Once the integral orientation histogram is computed, histograms can be accessed
in constant time independent of the size of the region. Similar to integral images
integral histograms can only provide histograms of rectangular regions.

For orientation histogram computation we use un-weighted squared regions.
Furthermore, for the descriptor we rotate the midpoints of each sub-patch rela-
tive to the orientation and compute the histograms of overlapping sub-patches
without aligning the squared region but shifting the sub-patch histogram relative
to the main orientation. The main advantage of our method is that we make use
of the full resolution of the input image without additional computational costs.

3.1 Computational Costs

The major question is how many descriptors have to be calculated in order to
obtain a speed up for the integral version compared to the conventional approach.
We define the costs for single histogram computation for both approaches which
has been done by adapting the analysis from [15]. We assume that the gradient
image has already been computed. In addition we assume computing histograms
only over squared regions.

Algorithm 2. Conventional histogram computation
//histogram computation
for each histogram do

for each gradient within window do
Find bin { 1 multiplication}
Increase bin value { 1 addition}

end for
end for

The conventional method for histogram computation is given in Algorithm 2.
Once the gradient image is available, for each gradient in the observed region
an assignment to the correct bin value must be done. Consequently the con-
ventional method strongly depends on the number of gradients contributing to
the histogram which leads to the complexity O(N2) for a squared region where
N corresponds to the window size. In addition the computational costs for a
squared region is

k · N2 · (cadd + cmult) (2)

where k corresponds to the number of histograms, cadd represent costs for an
addition and cmult are the costs for a multiplication.

Considering the integral histogram computation illustrated in Algorithm 3,
we see that equivalent to integral images some pre-computations have to be



Fast Approximated SIFT 923

Algorithm 3. Integral histogram computation
//pre-computation
for each gradient do

for each bin do
Propagate integral histogram { 1 addition}

end for
Find bin { 1 multiplication}
Increase bin value { 1 addition}

end for
//histogram computation
for each histogram do

for each bin do
Compute intersection { 3 additions}

end for
end for

done. Once the integral orientation histogram has been computed, orientation
histograms can accessed in k · b · 3 · cadd, where b corresponds to the number of
bins (in our case 16 bins are used). Similar to integral images rectangular regions
can be accessed. The costs for histogram computation does not depend on the
number of gradients within a region.

Consequently the total costs including the computation of the integral orien-
tation histogram can be written as

W · H · (b · cadd + cadd + cmult) + k · b · 3 · cadd (3)

where W × H represents the input image size.
Figure 2(b) compares standard histogram and integral histogram computa-

tion, where we have used relative costs for additions and multiplications from [15]

(a) Different filtering techniques for a
7 × 7 filter kernel

(b) Conventional and integral tech-
nique for orientation histogram com-
putation

Fig. 2. Comparison of computational costs for detector (left) and the descriptor (right)
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(addition:1 - multiplication:4). Other parameters of the cost functions, such as
the histogram patch size, have been experimentally determined. As we can see
in Figure 2(b), initially the costs for the integral histogram are much higher
however once the integral image is computed the costs increase very slowly. In
contrast the costs of the conventional method increase linearly with the number
of computed descriptors.

Integral orientation histograms are profitable especially when calculated over
large regions. This is especially suited for our approach because we always com-
pute the descriptors on the original resolution. Consequently, we take advantage
of using the whole information of the input image.

4 Experimental Results

We compare our novel approach to Lowe’s method with respect to performance
and speed. For matching performance we run two types of experiments to explore
the effects of the approximations made in our approach. First, both methods are
examined with respect to rotation, scale and perspective invariance on a data-set
of 15 commonly used images. Second, an evaluation comparing both, detectors
and descriptors, on 2 images of the popular Graffiti data-set has been done
using the framework of Mikolajczyk [9]. Finally we compare the runtime of our
approach to Lowe’s publicly available binaries 1.

4.1 Artificial Transformations

For all artificial transformations we used the same criterions for determining
repeatability of the detector and the matching score of the descriptor. The re-
peatability is obtained through a simple location criterion while for the matching
score a key-point match and the corresponding nearest descriptor match is re-
quired.

Due to the box filter approximation the rotation is the worst case scenario
for the detector. Even for the descriptor the worst case because no rotational
sampling is done. Therefore we artificially rotate each image from 0�to 90�of our
data-set with steps of 15�. In Figure 3 we see that both, the detector and the
descriptor of the approximated SIFT implementation behave worst at a rotation
of 45�. However, at the same time the performance is not much worse to SIFT.
The strong performance decrease of SIFT can be explained by the fact that the
small scale key-points are lost because of the smoothing effect after the bilinear
transformation.

Second, scale invariance is tested. As a reference image we used a down scaled
image (0.8) in order to have scale changes in both directions. Figure 4(a) shows
that our approach which passes on detecting key-points with small scales per-
forms slightly better than SIFT.

Finally, we examined the repeatability of the detector and the matching of
the descriptor by generating different projective transformations of the image.
1 Available at http://www.cs.ubc.ca/ lowe/keypoints/
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Fig. 3. Even in the worst case of a rotation of 45 �, approximated SIFT shows only a
slight decrease in performance of the detector (above) and the descriptor (lower)

(a) Scale transformations (b) Projective transformations

Fig. 4. The proposed approximations of our method do not have any effects on scale
or projective invariance

Again the results in Figure 4(b) show good performance for the approximated
SIFT implementation.

4.2 Mikolajzyk Framework

We compared our method to Lowe’s approach using the recently proposed frame-
work from Mikolajzyk [9]. Two images of the Graffiti data-set have been used.
The repeatability of both detectors are shown in Figure 5. When the overlap er-
ror tolerance is large enough the approximated SIFT implementation performs
even better than the original version. However, allowing only a small overlap
error, the approximation effects can be seen which lead to a slightly decreased
performance. In Figure 5(b) we see a similar result for the descriptor.

4.3 Speed

We have a non optimized C++ implementation of the approximated SIFT which
has been compared to the SIFT binaries provided by Lowe. In Table 3 the pro-
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(a) Repeatability of the detector (b) Descriptor evaluation using
the ratio-nearest-neighbor match-
ing criterion

Fig. 5. Evaluation results with the framework from Mikolajzyk

Table 3. Comparison of speed with respect to the image size

image size SIFT (Binaries) Approx. SIFT
800x640 4.24 s 0.625 s
400x320 1.34 s 0.180 s
200x160 0.44 s 0.075 s

cessing times for feature detection of different image sizes are listed. This exper-
iment was done on a Pentium 4 with 3.2 GHz. Results show that approximated
SIFT provides a speed-up of a factor 8 with this non optimized implementation
where the major benefit is obtained in the detection process. Optimizing the
implementation we expect to achieve at least a factor 12 to 16.

5 Conclusion

In this paper we have presented a novel approximation of the SIFT method that
achieves a considerable speed-up of the original method (at least a factor of eight
using our non optimized C++ implementation) while at the same time achieving
comparable matching performance. We have carefully analyzed the speed-up gain
theoretically and have performed extensive experimental evaluations.

This new fast SIFT variant opens several venues of further research which
we are currently investigating. Once we have calculated the integral images the
costs for the descriptor calculation is negligible. Therefore, we can perform a
local neighbor search around a key-point for more discriminative/reliable de-
scriptors. This should further increase the matching performance. Having such a
fast method, tracking using SIFT becomes feasible. This should result in highly
robust trackers. Another idea that is currently investigated is to use SIFT in an
Adaboost framework. This has already been proposed by Zhang et al. [16], but
having a fast SIFT will considerably speed-up the training process.
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