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Abstract

We propose a framework for observing static scenes that
can be used to detect unknown objects (i.e., left luggage or
lost cargo) as well as objects that were removed or changed
(i.e., theft or vandalism). The core of the method is a ro-
bust background model based on on-line AdaBoost which
is able to adapt to a large variety of appearance changes
(e.g., blinking lights, illumination changes). However, a
natural scene contains foreground objects (e.g., persons,
cars). Thus, a detector for these foreground objects is au-
tomatically trained and a tracker is initialized for two pur-
poses: (1) to prevent that a foreground object is included
into the background model and (2) to analyze the scene.
For efficiency reasons it is important that all components
of the framework are using the same efficient data struc-
ture. We demonstrate and evaluate the developed method
on the PETS 2006 sequences as well as on own sequences
of surveillance cameras.

1. Introduction

For most video surveillance systems a fore-
ground/background segmentation is needed (at least
in the very beginning). Usually this segmentation is
obtained by first estimating a robust background model and
second by thresholding the difference image between the
current frame and the background model. Such methods
are referred as background subtraction methods. LetBt

be the current estimated background image,I t the current
input image andθ a threshold, then a pixel is classified as
foreground if

|Bt(x, y)− I t(x, y)| > θ. (1)
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Figure 1: A background model is used for detecting fore-
ground objects in a static scene (colored boxes in the right
image). The automatic learning of allowed objects (yellow)
allows the detection of unknown objects (red).

As for realistic applications different environmental con-
ditions (e.g., changing lightening conditions or foreground
models moving to background and vica versa) have to be
handled. Therefore, several adaptive methods for estimat-
ing a background modelBt have been proposed that update
the existing model with respect to the current input frameI t

(e.g., running average [8], temporal median filter [10], ap-
proximate median filter [11]). A more detailed discussion of
these different background models can be found in [1,6,15].

But all of these methods have two drawbacks: First, as
the foreground objects may have a similar color as the back-
ground, these objects can not be detected by thresholding.
Second, these methods are only slowly adapting to slightly
changing environmental conditions. Thus, faster changes as
a flashlight signal or fluttering leaves in the wind can not be
modeled. To overcome this problem a multi-modal model
such as Mixture of Gaussian [20], Eigenbackgrounds [13]
or more efficiently by analyzing of foreground models [21]
can be applied.

For left luggage detection this simple segmentation pro-
cess has to be extended. We are not only interested in a fore-
ground/background segmentation but we are also interested
in differentiating betweenknown objects(e.g., persons) and
unknown objects(e.g., left luggage). Thus, we propose a



framework that combines a background model and a known
object identifier. An object detector is trained and the ob-
tained detections are eliminated from an already computed
foreground/background segmentation. As a result we ob-
tain regions that can not be modeled and may represent un-
known objects. An example is depicted in Figure 1. The
small red and blue squares represent regions that can not be
explained by the background model. By using a person de-
tector (yellow bounding boxes) the regions according to the
blue boxes are recognized as parts of a person. All other
regions (red boxes) can not be explained and are therefore
unknown objects.

The background model is learned by observing a scene
from a static camera and by learning everything that is
present in the scene by on-line AdaBoost [4]. Thus, all
dynamic changes (even moving objects) are assumed to be
normal and are therefore learned as an allowed mode. The
major benefit of such a background model is its capability to
adapt to any background and its ability to model even com-
plex scenes (e.g., containing dynamic background such as
blinking lights). Furthermore, it allows to adapt to continu-
ous changes (e.g., illumination changes in outdoor scenes)
while observing the scene.

The object detector is trained by Conservative Learn-
ing [17,18] and is applied for two purposes. First, the detec-
tion results are used to distinguish between relevant changes
(e.g., left luggage, lost cargo, etc.) and natural occurrences
(e.g., walking persons). Second, as the background model
can be updated on-line it is used to define an update pol-
icy. Thus, image areas where a foreground object was de-
tected can be excluded from the update process and a back-
ground model can be estimated even if foreground objects
are present during the learning stage. To increase the sta-
bility of the detector a tracker is used and an object is even
detected if there are larger changes in its appearance.

The proposed framework can be applied to detect (dy-
namic as well as non-dynamic) changes in a static scene.
Thus, unknown objects (i.e., left luggage or lost cargo) as
well as objects that were removed or changed (i.e., theft or
vandalism) can be detected. As the known-object detector
can be trained without any user interaction directly from
video data and the background model is estimated automat-
ically we have a fully automatic framework.

The outline of the paper is as follows: First, the frame-
work is introduced and the different modules are described
in Section 2. Next, experiments and results are shown in
Section 3. Finally, the paper is summarized in Section 4.

2. Video Surveillance Framework

The main components of the framework (see Figure 2) are a
robust block based background model and a known-object
identifier (detector and tracker). First, a foreground ob-

ject detector is trained for “known objects” by Conserva-
tive Learning [17, 18]. To be more robust additionally a
tracker [5] is initialized when a known object is detected in
the scene for the first time. Next, the background model
is estimated by observing the scene assuming that all input
frames contain only (even changing) background. When a
first model was estimated new input frames are evaluated.
All non-background regions are detected and verified by
the detection results. Thus, only regions are reported that
can not be explained by any of the models. Finally, in a
post-processing step only detections are considered that are
stable over time.

In addition, the background model is updated for every
new frame. To avoid that foreground objects are included
into the background model a special update policy is defined
(detection results are used to define areas where no updates
should be performed for some time).

Figure 2: Overview of the proposed framework.

All modules (background model, detector and tracker)
are based on the same type of classifier that is trained us-
ing the same features. In particular we apply Haar-like
features [23], orientation histograms (with 16 bins) simi-
lar to [2,9] and a simplified version (4-th neighborhood) of
local binary patterns (LBP) [12]. Using integral data struc-
tures the features can be estimated very efficiently [16] be-
cause this data structure has to be computed only once for
all modules. To have an efficient system we also need an es-
timate of the ground plane which can be automatically done
by, e.g., [14].

2.1. Background Model
For estimating the change detection we apply a new
classifier-basedbackground model [4] that is based on the
idea of a block based background model [7]. Thus, the gray-
scale image is partitioned into a grid of small (overlapping)
rectangular blocks (patches). For each of them a separate
classifier is computed by combining the image features that



were described in the Section 2. For training the classifiers
we use boosting for feature selection from this highly over
complete representation (each feature prototype can appear
at different positions and scales). The overall principle is
depicted in Figure 3.

Figure 3: The background model is formed by a grid of
regular aligned classifiers with an overlap of∆x = ∆y =
50%. Each cell is represented by a strong classifier obtained
by boosting which combines several weak classifiers based
on visual features. Efficient computation is achieved by us-
ing fast computable features via integral structures.

In general Boosting (see [3] for a good introduction) is
a widely used technique in machine learning for improv-
ing the accuracy of any given learning algorithm. In fact,
boosting converts a weak learning algorithm into a strong
one. Therefore, for an input vectorx a strong classifier
hstrong(x) is computed as linear combination of a set of
N weak classifiershweak

n (x):

hstrong(x) = sign(conf(x)) (2)

conf(x) =
∑N

n=1 αn · hweak
n (x)∑N

n=1 αn

(3)

A weak classifiers is a classifier that has to perform only
slightly better than random guessing, i.e., for a binary deci-
sion task, the error rate must be less than 50%. Asconf(x)
is bounded by[−1, 1] it can be interpreted as a confidence
measure (which is related to the margin). The higher the
absolute value, the more confident is the result.

Boosting for feature selection was first introduced by
Tieu and Viola [22] and has been widely used for differ-
ent applications (e.g., face detection [23]). The main idea
is that each feature corresponds to a single weak classi-
fier and boosting selects from these features. Given a set
of possible features in each iteration stepn all features are
evaluated. The best one is selected and forms the weak hy-
pothesishweak

n which is added to the final strong classifier
hstrong.

This process as described above works off-line. Thus,
all training samples must be given in advance. But for

learning a dynamic background model we need an on-line
learning method that can adept to changing environmen-
tal conditions as new frames arrive. Thus, we apply an
on-line version of boosting for feature selection [4]. The
main idea is to introduce “selectors” and to perform boost-
ing on these selectors and not directly on the weak classi-
fiers. Each selectorhsel(x) holds a set ofM weak classifiers
{hweak

1 (x), . . . , hweak
M (x)} and selects one of them accord-

ing to an optimization criterion based on the estimated error
ei of the classifierhweak

i :

hsel(x) = hweak
m (x), m = arg min

i
(ei) (4)

Moreover, the importance/difficulty of a sample is esti-
mated by propagating it through the set of selectors. For
more details see [4]. But since the creation of weak classi-
fiers is very important for our specific task this step is de-
scribed explicitly in this paper.

For on-line learning a weak classifierhweak
j for a fea-

ture j we first build a model by estimating the probabil-
ity P (1|fj(x)) ∼ N (µ+, σ+) for positive labeled samples
andP (−1|fj(x)) ∼ N (µ−, σ−) for negative labeled sam-
ples, wherefj(x) evaluates this feature on the imagex. The
mean and variance are incrementally estimated by applying
a Kalman-filtering technique. Next, to estimate the hypoth-
esis for the Haar-Wavelets we use either simple thresholding

hweak
j (x) = pj · sign(fj(x)− θj), (5)

where

θj = |µ+ + µ−|/2, pj = sign(µ+ − µ−) (6)

or a Bayesian decision criterion

hweak
j (x) = sign(P (1|fj(x))− P (−1|fj(x)))

≈ sign(g(fj(x|µ+, σ+)− g(fj(x)|µ−, σ−)),
(7)

whereg(x|µ, σ) is a Gaussian probability density function.
For histogram features (orientation histograms and LBPs),
we use nearest neighbor learning with a distance function
D (e.g., Euclidean):

hweak
j (x) = sign(D(fj(x), pj)−D(fj(x), nj)) (8)

The cluster centers for positivepj and negativenj samples
are learned by estimating the mean and the variance for
each bin separately.

For the application of background modeling wedo not have
negative examples. But, we can treat the problem as an
one-class classification problem and use only positive sam-
ples for updating. The key idea is to calculate the negative
distribution for each feature directly without learning. We
model the gray value of each pixel as uniformly distributed



with mean128 and variance2562

12 (for an 8 bit image).
Applying standard statistics the parameters of the negative
distribution µ− and σ− of Haar features can be easily
computed. For orientation histogram features the negative
clusternj consists of equally distributed orientations. The
characteristic negative cluster for a 16 bin LBP-feature is
given bynj = 1

50 · [6, 4, 4, 1, 4, 1, 1, 4, 4, 1, 1, 4, 1, 4, 4, 6]
for the binary patterns[00002, 00012, 000102..., 11112]1.

Thus, we are able to compute the weak classifiers and
use them for predicting the background (including statisti-
cal predictable changes). In the initial learning stage a sep-
arate classifier is built for all image patches assuming that
all input images are positive examples. Later on, new input
images are analyzed and the background model is updated
according to a given policy.

Evaluation

A region is labeled as foreground if it can not be modeled by
the classifier, i.e., the obtained confidence of the classifier is
below a certain threshold:

conf(x) < θeval (9)

Update

For updating the classifiers we adopt the following very
simple policy. We update a classifier if its confidence re-
sponse is within a certain interval:

θupdate
lower < conf(x) ≤ θupdate

upper (10)

Usually θupdate
lower = θeval and the upper threshold is set to

avoid over-fitting. In addition, in the post-processing steps
several regions (known objects) are excluded from updating
for a certain time.

Due to the specific type of features used for training
the classifiers the background model is high sensitive and
even small changes can be detected. Moreover, the pro-
posed background model is capable of modeling dynami-
cally changing backgrounds (e.g., flashing lights, moving
leaves in the wind, flag waving, etc.). Since an efficient
data structure (integral image) is used the evaluation can be
implemented very efficiently

2.2. Known-object Identifier
Object Detector

For automatically learning a person model we apply Con-
servative Learning [17, 18]. Starting with motion detection
an initial set of positive examples is obtained by analyz-
ing the geometry (aspect ratio) of the motion blobs. If a
blob fulfills the restrictions the corresponding patch is se-
lected. Negative examples are obtained from images where

1These numbers are obtained by a lengthly calculation assuming equal
probability of all patches.

no motion was detected. Using these data sets a first dis-
criminative classifier is trained using an on-line version of
AdaBoost [4]. In fact, by applying this classifier all per-
sons are detected (a general model was estimated) but there
is a great amount of false positives. Thus, as a generative
classifier robust PCA [19] is applied to verify the obtained
detections and to decide if a detected patch represents a per-
son or not. The detected false positives are fed back into the
discriminative classifier as negative examples and the true
positives as positive examples. As a huge amount of data
(video stream) is available very conservative thresholds can
be used for these decisions. Thus, most of the patches are
not considered at all. Applying these update rules an incre-
mentally better classifier is obtained. Moreover, an already
trained classifier can be re-trained on-line and can therefore
easily be adapted to a completely different scene. As the
framework is very general we can apply it to learn a person
detector as well as to learn a model for cars. For the whole
procedure no user interaction is needed.

Object Tracker

After a target object was successfully detected a tracker is
initialized. In particular we apply a tracker [5] that is based
on on-line boosting [4] similar to the background classifier.
First, to initialize the tracker, a detected image region is as-
sumed to be a positive image sample. At the same time neg-
ative examples are extracted by taking regions of the same
size as the target window from the surrounding background.
Using these samples several iterations of the on-line boost-
ing algorithm are carried out. Thus, the classifier adapts to
the specific target object and at the same time it is discrim-
inating against its surrounding background. The tracking
step is based on the approach of template tracking. We eval-
uate the current classifier on a region of interest and obtain a
confidence value for each sub-patch. We analyze the confi-
dence map and shift the target window to the (new) location
where the confidence value is maximized. Once the object
has been tracked the classifier has to be updated in order to
adjust to possible changes in appearance of the target object
and its background. The current target region is used as a
positive update of the classifier while the surrounding re-
gions represent the negative samples. As new frames arrive
the whole procedure is repeated. The classifier is therefore
able to adapt to changes in appearance and in addition it be-
comes robust against background clutter. Note that the clas-
sifier focuses on the current target object while at the same
time it attempts to distinguish the target from its surround-
ing. Moreover, tracking of multiple objects is feasible just
by initializing a separate classifier for each target object.



3. Experimental Results
To show the power of the approach we applied the proposed
framework on three different scenarios. The first experi-
ment was carried out on the PETS 2006 Benchmark Data
that is publicly available2. But as this paper is mainly fo-
cused on change detection (left objects as well as objects
that were removed) by using a robust background model the
detection of left luggage (briefcase, bag, etc.) is not limited
to the luggage that was left by a certain person. In addi-
tion, we have created various sequences showing a corridor
in a public building and a tunnel. Each of the sequences
demonstrates a special difficulty that can be handled by our
framework.

To obtain comparable results we have used the same pa-
rameter settings for all experiments. For training the clas-
sifiers (background, detector) the size of the pool of weak
classifiers was limited to 250 for all modules. The clas-
sifier for the tracker and the background model was esti-
mated from a linear combination of 30 weak classifiers (se-
lectors) whereas for the more exact detector 50 weak clas-
sifiers where used. The search region for the tracker was set
twice as large as the current object dimension. For estimat-
ing the background model patches of20 × 20 pixels with
50% overlapp were defined. The evaluation threshold was
set toθeval = 0 and for the update policy the parameters
θupdate

lower = 0 andθupdate
upper = 0.5 were used. For our experi-

ments we achieve a frame-rate of 5 to 10 frames per second
on an 1.6 GHz PC with 1 GB RAM.

3.1. PETS 2006 Benchmark Data
First, we demonstrate our approach on the publicly avail-
able PETS 2006 Benchmark Data with supplied ground
truth. Therefore, we have selected two sequences from dif-
ferent camera positions3. We have chosen these special se-
quences to show that we are not limited to a certain camera
position or camera geometry. In addition, we can demon-
strate that our background model can handle the occurrence
of shadows and reflections.

The first sequence was taken from a “side view”. Peo-
ple are walking around and a man is entering the scene and
leaves a suitcase behind. Typical frames of this scene are
shown in Figure 4(a). Thus, the defined task was to detect
the suitcase. Therefore, first the suitcase as well as the per-
sons are detected as non-background objects (Figure 4(b)).
Second, the “known-object identifier” (detector/tracker) de-
tects all known objects, i.e., the persons walking or standing
around (Figure 4(c)). Finally, when combining the results
from the background model and the detections obtained by
the tracker only the suitcase is detected (Figure 4(d)). In

2http://www.pets2006.net, April 25th, 2006
3Dataset S7 (Take 6-B), Camera 3 and Dataset S5 (Take 1-G),

Camera 4.

addition to the “known-object identifier” a region growing
algorithm is applied. All non-background patches that are
within the same region as a detected person are assumed to
be part of the person. Thus, an outstretched arm or a drawn
suitcase (see Figure 4, second row) are recognized as a part
of a person and are therefore not labeled as unknown ob-
jects. Since the current implementation of the person detec-
tor can not detect partial persons (person entering or leaving
the scene) such patches were not considered at all.

The second sequence taken from a “semi frontal view”
is more difficult for our method because persons and other
unknown objects (luggage) are present in the scene from
the very beginning (see Figure 5). As can be seen in Fig-
ure 5(b-d) (second row) persons are not a problem. If a
person was detected the corresponding region is not used
for updating the background model. Thus, the person in not
included in the background. When combining the results
of both modules the person is not detected any more. In
contrast to persons unknown objects are modeled as back-
ground. The same applies for persons that are not detected
(e.g., children may not detected due to the restriction from
the calibrated ground plane). But all other objects, i.e., the
ski-sack near to the glass wall, the bag and even the news-
paper on the bench were detected as left luggage!

For evaluation we analyzed the detections of the suit-
case (Sequence 1) and of the ski-bag (Sequence 2). Thus,
the true positives and the false positives were counted start-
ing with the first occurrence of the left object (Sequence 1:
frame 1210/3400, Sequence 2: frame 1962/2400). The re-
sults are summarized in Table 1.

sequence true pos. false pos.
PETS Seq. 1 91.5% 3.4%
PETS Seq. 2 96.6% 1.9%

Table 1: Evaluation Results for the PETS 2006 Sequences.

For both sequences we obtain a detection rate of more
than 90%, where most of the misses arise from non-
background regions growing together (e.g., a person is
passing by a left object very closely) which can be easily
avoided by temporal filters. Thus, the detection rate for the
second sequence is much better compared to the first se-
quence since less persons are passing by the left object very
close. The false positives are the result of temporary unsta-
ble detections (e.g., a thrown suitcase or a cast shadow is
detected as left luggage) or may be caused by changes in
background that were not learned during the training stage.
But by using simple logic and time constraints the number
of false alarms can be reduced.



(a) (b) (c) (d)

Figure 4: PETS 2006 Dataset - Sequence 1: (a) original image, (b) background patches that can not be explained by the
background model, (c) detected (tracked) persons, (d) finally detected the suitcase.

(a) (b) (c) (d)

Figure 5: PETS 2006 Dataset - Sequence 2: (a) original image, (b) background patches that can not be explained by the
background model, (c) detected (tracked) persons, (d) finally detected the ski-sack (and in addition the bag and the newspaper
on the bench).



(a) (b) (c) (d) (e)

Figure 6: CoffeeCam / Larceny Scenario - Changes in the background model: (d) the missing poster (object removed) and
(e) the poster lying on the floor (object added) are detected.

(a) (b) (c) (d)

Figure 7: Tunnel Safety - Objects that were thrown out of the car are detected: (a) no object, (b) chock, (c) car tire, (d) safety
cone.

3.2. CoffeeCam

Next, we demonstrate that our framework can cope with dy-
namic backgrounds. Therefore, we have taken several se-
quences showing a corridor in a public building near to a
coffee dispenser. The dynamic background was simulated
by using a flashlight. Several typical scenarios including
left luggage and the larceny of paintings were defined and
evaluated.

In the following the results obtained for the larceny of
paintings scenario are presented. After a background model
was learned from dynamically changing background im-
ages (blinking alarm light) the corridor was kept under
surveillance. To simulate the larceny the poster was re-
moved by one person and thrown down to the floor. Fig-
ure 6 shows the detection results of five consecutive frames.
In the beginning, persons are walking around and nothing
suspicious is detected (Figure 6(a-b)). Then, the poster is
removed but the changed background area is occluded by
the person (Figure 6(c)). Finally, the missing poster (Fig-
ure 6(d)) as well as the poster lying on the floor (Figure 6(e))
are detected.

3.3. Tunnel Safety

Finally, to show the generality of our approach we demon-
strate the method on a tunnel safety task. In addition, we
show that we can also detect objects of low contrast that

would not be detected by using a standard approach. Fig-
ure 8 shows the first (a) and the last (b) frame of a test se-
quence. It is even hard for a human to detect all three ob-
jects that were thrown out of the car! Moreover, each of
the objects (a chock, a car tire and a safety cone) has a size
of only a few pixels. Due to lights of cars, warning lights
of trucks etc. the background is changing over time; a dy-
namic multi-modal background model is needed to robustly
detect changes. In fact, our framework handles both, the
dynamic background and the low contrast video data. Thus,
detection results of four subsequent frames are shown in
Figure 7.

(a) (b)

Figure 8: Tunnel Safety: Due to lightening conditions and
to low quality cameras the contrast is very low.



4. Summary and Conclusion
We have presented a framework for detecting changes in the
background. Thus, we are able to detect unknown objects
or objects that were removed. A new robust background
model that is based on on-line learning feature based clas-
sifiers and an object detector (tracker) are combined. Thus,
detected changes are verified by the detector and all regions
that can not be explained are returned as unknown fore-
ground objects. In addition, detected regions are excluded
from updating. Thus, a background model can be learned
even if (known) foreground objects are present in the scene.
The proposed background model is very sensitive, i.e., even
objects in low contrast images are detected. In addition,
it can handle multi-modalities, i.e., dynamic changes in the
background. As for all components the same data structures
(integral representations) are used the whole framework can
be implemented in a very efficient way. Moreover, all com-
ponents run in an unsupervised manner.
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