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ABSTRACT
So far, most image mining was based on interactive querying. Al-
though such querying will remain important in the future, several
applications need image mining at such wide scales that it has to run
automatically. This adds an additional level to the problem, namely
to apply appropriate further processing to different types of images,
and to decide on such processing automatically as well. This paper
touches on those issues in that we discuss the processing of land-
mark images and of images coming from webcams. The first part
deals with the automated collection of images of landmarks, which
are then also automatically annotated and enriched with Wikipedia
information. The target application is that users photograph land-
marks with their mobile phones or PDAs, and automatically get
information about them. Similarly, users can get images in their
photo albums annotated automatically. The object of interest can
also be automatically delineated in the images. The pipeline we
propose actually retrieves more images than manual keyword input
would produce. The second part of the paper deals with an entirely
different source of image data, but one that also produces massive
amounts (although typically not archived): webcams. They pro-
duce images at a single location, but rather continuously and over
extended periods of time. We propose an approach to summarize
data coming from webcams. This data handling is quite different
from that applied to the landmark images.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and Retrieval
—Content Analysis and Indexing; I.4.8 [Computing Methodolo-
gies ]: Image Processing and Computer Vision—Scene Analysis
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1. INTRODUCTION
Image mining has started off pretty much as an interactive pro-

cess. This still is the case, also in contributions that can be re-
garded as state-of-the-art. Examples are collecting images from
public repositories by typing in queries [24] and from movies by
delineating objects by hand [23]. Several applications need images
to be mined at too large a scale for such interaction to be affordable.
Going back to the PhotoTourism example in [24], one would like to
automatically find out about the existence of landmarks at a world-
wide scale, and then mine images equally automatically for all of
those. This means that there is a need for automation in the mining
from the very first steps, i.e., some systems should autonomously
know what to mine where and when.

Already in [21] we have proposed a mechanism to distinguish
between images of “landmarks” vs. images of events vs. the rest.
In this paper, we discuss a bit further how we plan to differentiate
the treatment of automatically collected images, according to their
nature. As in [21], a first part of this contribution focuses on land-
mark images. We demonstrate how the set of retrieved landmark
images can be further enlarged and how to apply it to annotation.

The second part then focuses on an important image type, which
is automatically rejected by the landmark selection procedures from
[21], namely those coming from webcams. These are classified as
such automatically as well (many images taken over extended pe-
riods of time and at a more or less fixed temporal rate, taken by
a single source - and at the same place if geo-tagged). Typically,
images from webcams are not archived. So, we discuss a web-
cam summarization tool, which selects images that together give
an overview of what the webcam typically sees, as well as of the
unusual scenes it observes.

So far, we have discussed the handling of landmarks images from
public repositories and images from webcam streams. Another ex-
ample would be events. This category is again automatically de-
tected by the method of [21]. Here, one would also need dedicated
types of processing. For example, for images of a birthday party, it
is probably relevant to figure out who appears in which image. Tags
and keywords could be used to find out about their names [22].
In the case of a concert, the focus may be on where and when it
was, and on which band is seen performing. One can only start to



imagine what would be required to deal with a sports match or an
art vernissage. We give these examples merely to show that much
work is still required to make fully automated mining a reality.

Next, we discuss the automatic landmark and webcam mining
procedures in more detail (sections 2 and 3, respectively).

2. LARGE-SCALE LANDMARK MINING
In [21] we have proposed a way to automatically mine landmark

images from public repositories. An important step in the process
was the automated distinction between landmark (object) images,
vs. event images vs. others. Here, the focus is again on the land-
mark images. We discuss two important extensions. On the one
hand, we try to enlarge the set of images that are retrieved for each
landmark. In [21], only geo-tagged images were considered for the
visual clustering. Section 2.1 gives a short summary of that earlier
work. Here, images without geo-tags are added, as described in
section 2.2. As a second extension, an example application is built
on top of the automated landmark detection and image mining. We
discuss a web application for automated holiday snap annotation,
c.f ., section 2.3.

2.1 Automatic landmark mining: past
In Quack et al. [21] we proposed a system to automatically crawl

community photo collections and mine images of landmarks, while
discarding the many dog, cat, party, etc. pictures. Textual image
annotations are used to find out more about the landmarks, in par-
ticular to retrieve relevant Wikipedia pages. The approach exploits
the stored, collective intelligence of Internet users to distill a refer-
ence database of joint landmark images and descriptions.

In summary, the system in [21] performs the following steps:

1. A geo-spatial grid is overlaid over the earth. For each grid
tile a query is sent to Flickr, to retrieve geo-tagged photos
from that area.

2. For each tile, the retrieved photos are matched pair-wise us-
ing local visual features and a homography as geometric fil-
ter on the features’ positions. The number of inlier features
after homography verification gives a similarity measure for
each pair of photos. The resulting distance matrix is used to
cluster photos into groups of images showing the same ob-
ject or scene. Since this expensive pair-wise matching step
is done only per geographic cell (which typically contains
significantly fewer than a thousand images on average) it is
scalable enough. Moreover, it can be executed in parallel for
each geographic tile. Figure 1 shows typical image clusters
as they are created in this stage. The clusters for landmarks
are automatically split from event images and others.

3. The metadata of each landmark cluster’s photos is used to au-
tomatically label it. Textual labels are derived using frequent
itemset mining [3] on the associated text (tags, titles etc.).

4. These frequent itemsets are then used as queries to find re-
lated Wikipedia articles. A final verification is performed by
extracting images from each article and trying to match them
back to the associated photo cluster. If matching images can
be found, the article is assumed to be relevant for the cluster.

2.2 ...and present: extended mining
Geo-tagging as required by [21] is quickly becoming general

practice, but it isn’t yet. On the other hand, applications built on
top of the image clusters often benefit from a dense covering of the
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Figure 1: Example object cluster. Top: mined photo clusters with
GPS location and tags. Bottom right: related content from Wikipedia.
Bottom left: The images from the articles are used to match back to the
clusters, as proposed in [21], which serves as a verification step for the
articles’ relevance.

landmark by the images. Thus, for the landmark images, it is im-
portant to go beyond those that have been collected through their
geo-tags. Here, we propose a strategy that does. As a matter of
fact, it also goes beyond the traditional, typed query results. Each
cluster of [21] will be expanded on the basis of several, automat-
ically generated queries. For instance, in our case, it is perfectly
possible to generate queries in different languages. Take the Mona
Lisa as an example. With the ‘Mona Lisa’ query only a subset of
images will be retrieved. Additional queries like ‘Monna Lisa’ and
‘Joconde’ will produce more.

Note that a limitation of our approach still is that a sufficiently
large cluster of visually matched, geo-tagged images must be avail-
able to kickstart the process. Missing out on smaller clusters, which
would then also have few geo-tagged images, is a problem suffered
by other state-of-the-art approaches as well [18].

In order to enlarge the landmark image clusters without increas-
ing the computational time, we improve the pipeline proposed in
[21] (section 2.1) through several modifications:

Step 1. A first modification is made to the first step. Instead
of using a fine regular grid with cell radii of only a few hundred
meters we start off with a very coarse grid with cell radii of hun-
dreds of kilometers. Before we download images from a cell we
first query the cell only for the number of images it contains. If
the cell contains more than a certain threshold T it is split into four
equally large cells. This continues recursively until a cell has less
than T images, in that case we start retrieving the images of the
cell. The advantage of this method is that vast empty regions can
be covered very quickly. This helps freeing the necessary time to
add the following modifications.

Step 2. For the second step, we no longer rely on a regular ge-
ographic grid only to crawl photos from Flickr. Instead, we also
instantiate crawling from the locations of geo-tagged Wikipedia ar-
ticles by using their respective location as a “seed point” to query
their vicinity for photos (Wikipedia pages not yet linked with image
clusters). The reasoning behind this extension is that many relevant
articles are already tagged with their location, but we simply lack
a sufficient amount of photos for the given topic and hence no ap-
propriate queries are generated. This approach retrieves additional
but small clusters of images, still geo-tagged, and connected to a
Wikipedia site (as normally achieved through Step 4).

Step 3. Our extension to step 3 uses the textual frequent itemsets
generated during the mining stage to find more (non geo-tagged)
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Figure 2: Left side: The Y axis indicates by how much (in percent
relative to the original cluster size) a cluster has grown by adding non
geo-tagged photos. The black line is the theoretical limit of how much a
cluster can grow, given that we consider at most 100 candidate images
per itemset to enrich the cluster. Right side: Individual matching prob-
abilities vs. cluster size, i.e., what is the chance that an image returned
as a search result matches the cluster.

images to enrich the cluster, instead of only using them to find
Wikipedia pages. We use the itemsets as queries for an image
search service (e.g., Google images, Flickr etc.) and match the top-
N results against the images of the existing cluster. This exten-
sion is also linked with Step 4 in that queries that produce relevant
Wikipedia pages are also the most successful ones in retrieving ad-
ditional images.

Step 4. We also extended the fourth step of the original ap-
proach, by not only searching for related Wikipedia articles through
Google, but also querying articles geographically by distance from
the cluster. This is done using the mean location of all photos as-
signed to a given object cluster as a query point and retrieving all
geo-tagged Wikipedia articles within a given radius.

Fortunately, the Step 3 extension works especially well for small
clusters, where the addition of images has the most impact. This ap-
pears to be because the probability of a candidate image matching
against any image already inside a cluster does not depend strongly
on the cluster size. Figure 2 demonstrates this. We applied the
aforementioned procedure to a random subset of 332 clusters and
evaluated how much each cluster has grown. We also made a dis-
tinction between queries that yield validated Wikipedia articles and
queries that do not. In this setting we use the 5 itemsets with largest
support as search queries for Google images and limit the maxi-
mum number of candidate images to 100 per query. Adding all
100 images for all itemsets yields the theoretically maximum per-
formance in the left part of the figure. We see that small clusters
grow comparably as close to this maximum as larger clusters do.
Looking at how the median matching rate changes with cluster size,
we find that even very small clusters yield stable matching rates for
queries that are known to lead up to validated Wikipedia articles.
As a consequence, especially small clusters can grow a lot relative
to their original size. Large clusters usually don’t need to. These
data have been corrected for the bias created by the fact that rele-
vant Wikipedia pages are guaranteed to yield at least one matching
image. Thus, a local copy of Wikipedia can be used to a priori as-
sess the potential value of a query before any external service like
Google or Flickr has to be queried.

A specific example of how much this processing can help is
given in figure 3. The query used to retrieve these images was "mu-
seums perseus medusa vatican" with a matching rate of 35% while
the other two mined itemsets did not yield any results. There are
two things that should be noted here. First, none of the individual
words in this query would produce nearly as many matching can-
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Figure 3: A small cluster consisting only of 5 images showing the
Perseus Statue in the Vatican Museum is enriched by 35 additional non
geo-tagged images that were found via Google images. In this particu-
lar instance, this not only increase the cluster size but also the accuracy.

didate images compared to the actual, composition query. Second,
the initial cluster contains an incorrect image and thus is only 80%
accurate, but by adding more not geo-tagged images, the cluster’s
accuracy increased to 95%. This demonstrates the effectiveness of
using the mined itemsets as queries even for small clusters.

2.3 Auto-annotation application
With the database of landmark image clusters in place, we can

use it for applications such as auto-annotation [7] or 3D recon-
struction [27, 8]. In [7] we propose such a retrieval-based auto-
annotation system, which annotates landmarks in query images.
The annotation system combines mining and state-of-the-art large-
scale object retrieval, i.e., visual vocabulary techniques [23]. Due
to its superior performance, we build on the approximate k-means
(AKM) idea [19] to index our database of images.

The final annotation stage consists of two steps: bounding box
estimation and labeling. To estimate the bounding box for the land-
mark in the query image, this image is matched to a number of im-
ages in the cluster returned at the top of the retrieval results. The
mean number of votes for all features in the bounding box serves as
a score for the bounding box hypothesis. Typical “raw” results of
this annotation process are shown in figure 5. Note the wide variety
of object and scene types that can be annotated by our system.

We implemented the system of [7] with the aforementioned ex-
tensions as a web service. Our auto-annotation application con-
nects to the Flickr API and allows users to annotate their photos,
e.g., their holiday snaps. Since the crawling stage already added lo-
cation, related text and related content to each object cluster, we can
simply copy this information to serve as labels for the image to be
annotated. The user interface for annotation and the viewer inter-
face are shown in figure 4. The cross media information collected
during the mining stage presents relevant contextual information
for each annotated photo. Obviously, once the photos are anno-
tated, a user’s photo-collection can be searched by keyword. Note
that the contextual information is richer than what people would
typically add by hand.

3. WEBCAM SUMMARIZATION
In the previous section, we discussed the large scale, automatic

mining from public repositories of landmark images. As said, other
image types would require a very different treatment. Images that
are identified as coming from a webcam are a good case in point.
They do not have to be scrambled together from many sources, but
would require online monitoring and archival from a single source.
Again, in order to deal with such data at a large scale, these image
streams could each be replaced by a relatively small, representative
set of images. Hence, the question is which images ought to be
selected. We present a method that picks a representative mix of
typical and unusual images.
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Figure 5: Results of automatic object-level annotation with bounding
boxes. Groundtruth annotation is shown as solid yellow lines, the auto-
annotation results are shown as green dashed lines.

Our approach looks for images that are sufficiently different from
any images seen coming from the webcam before. These novel im-
ages automatically produce the mix we are after. At the beginning,
the images may simply be as typical and usual as any other image.
Yet, the system has not observed such images and will at that stage
consider them sufficiently novel. Suppose the webcam observes
a crossroad. Four months later, when it starts to snow, this will
be unusual to the system as well. Hence, after a while the system
will have collected a set of normal, but representative images of the
scene. However, if something truly unusual happens, we also want
to archive those images, again by detecting the novelty in compar-
ison to all prior, collected images.

Although novelty detection is a classical task in computer vision,
most previous approaches are not suitable for permanent, time-
lapsed data streams. Many methods work with offline data and first
learn a static normal model (or normal concept), which remains the
same after a training phase is completed [12, 15, 28, 30]. The nor-
mal model represents typical situations observed in the data stream.
However, for permanent data streams it might need to change con-
stantly (concept drift), thus the model needs to be learnt online and
adapted permanently. Secondly, most algorithms are based on in-
formation that is very difficult to extract robustly from webcams.

Typically, the framerate is very low or even not constant, which
prevents the use of optical flow [2, 14] or object tracking [10, 16,
25]. To handle these difficulties, our approach is purely data driven
and based on simple, static features.

Recent years witnessed the proliferation of publicly accessible
webcams. However, most work to explore such data focuses on es-
timating imaging conditions such as illumination and color changes,
which can be used, e.g., for camera geo-location [13, 26], shadow
removal [29], seasonal variation detection [11], or video synop-
sis [20]. Our previous method [5] automatically detects anomalies
in continuous data streams. We adapt this algorithm to summarize
the data stream. The method described in the following sections
builds a representative mix of usual and unusual imagery. As will
be explained, such mix results from a single approach.

3.1 What is usual?
Our approach is that everything is usual that has been observed

in the past (or within a specified time frame, respectively). Hence,
our algorithm checks if a new observation is a statistical outlier
and thus should be classified as a novel, unusual image, while con-
stantly adapting the model of normality. We employ the concept of
meaningful nearest neighbours [4, 17] for classification and main-
tain a normal model by applying online agglomerative clustering.
The cluster centers will represent the typical images of a scene that
could be used to summarize a data stream.

More formally, given a continuous (i.e., ongoing, permanent)
data stream S = {x1, . . . , xt−1} (e.g., of images that are repre-
sented by feature vectors xi ∈ IRn in a high dimensional space),
our target is to classify the next example xt as normal if it can be
explained by previous data (i.e., it is similar) and as abnormal oth-
erwise. A scene is usual if a very similar scene has been observed
at least once in the past (c.f ., [30]). Because data points that appear
temporally close may be correlated, we introduce a time delay Δt
(e.g., a day). However, a usual scene still can appear frequently or
rarely. The first time a sunny day is observed from a London we-
bcam, an image of the scene will look very differently than every-
thing before. Thus, the scene is unusual. However, if more sunny
days are observed, they are becoming usual but may still be rare.
If they appear more often then they become also frequent. In this
work, we primarily concentrate on finding usual, frequent scenes
to summarize the online data stream from a webcam. In the begin-



Figure 6: Our approach for unusual scene detection using meaningful
nearest neighbours: The similarity score s�(xt) of the input xt and
x�

i , the best matching sample from the memory M, is compared to the
distribution S� of similarity scores s�.

ning, more or less all scenes are equivalently frequent; over time
the algorithm finds a more and more representative subset.

3.2 Meaningful Nearest Neighbours
Data Representation Because images from webcams are typi-

cally captured with low resolution and low, even non-constant fram-
erate, our method is based on static, low level features. The algo-
rithm computes Histogram of Oriented Gradient features [6] by
applying Sobel filters on 8×8 image cells and equally dividing the
orientation range to 8 bins. The HOG features from all cells are
then concatenated. For simplicity and efficiency, the concatenated
features f1, f2 of two data points are compared using normalized
cross correlation.

Classification A simple approach to detect an unusual scene
based on the previous definitions is to store all observed features in
a memory

M = {x1, . . . , xt−Δt}, (1)

and to find the best matching sample x�
i for a new data point xt (i.e.,

the nearest neighbour in M). Then, the similarity score of this best
match

s�(xt) = max
xi∈M

sim(xt, xi) (2)

is compared to a threshold for classification, where sim(·, ·) de-
notes the similarity of two data points. However, it is not clear if the
nearest neighbour is meaningful for a high-dimensional space [4],
because most points are equally distant to a query point. Thus, it
may be difficult to find an appropriate threshold to classify a query
point as outlier based on its distance to the nearest neighbour.

Therefore, we propose the following approach based on the con-
cept of meaningful nearest neighbours, as illustrated in figure 6.
We compare the similarity score s�(xt) of the current input and the

best match in the memory with the distribution S� of the similarity
scores of all nearest neighbours in the memory M obtained so far.
In the beginning, the memory M will not contain a representative
set of images, hence S� is not meaningful yet. However, as time
goes by, more and more images are observed and integrated, such
that the memory will contain a representative set of typical images
of the scene.

A new data point xt is then classified as an inlier (and thus as
usual), if its similarity score s�(xt) is likely to be generated from
the distribution S�. Consequently, our algorithm computes the in-
lier probability Pusual of a new data point xt by comparing its
similarity score s�(xt) with the cumulative probability distribution
FS�(·) of S�

Pusual(s
�(xt)) =

Z s�(xt)

s=0

S�(s)ds = FS�(s�(xt)) (3)

Finally, xt is classified as unusual using the probability threshold
palarm

Pusual(s
�(xt)) < palarm. (4)

This can be rewritten using Eq. (3) and the inverse function F−1
S� (·)

of FS�(·) to compute a threshold for the similarity score:

s�(xt) < F−1
S� (palarm) = θalarm. (5)

Advantages Using meaningful nearest neighbours for novelty
detection has several benefits. Most importantly, no scene-specific,
manually tuned similarity threshold for the classification based on
the distance to the nearest neighbour is used. Such a threshold
would have to be changed permanently, as more data is observed
and included in the memory. Instead, the meaningful nearest neigh-
bour approach classifies a data point relative to previous observa-
tions, by comparing it to the distribution of nearest neighbour dis-
tances of previous observations. Secondly, the normal model is
purely data driven. It is represented by the data points themselves,
which allows the model to change in order to become more sensi-
tive if more data is observed. Thus, the model adapts automatically
and permanently.

3.3 Clustering
To summarize a continuous data stream and because not all data

could be stored in practice, the memory M is modified by apply-
ing an online, agglomerative clustering algorithm similar to [9]. As
long as the maximum number of clusters K is not reached, ev-
ery observation is saved. Afterwards, the most similar two cluster
centers are merged and the new observation is added. However, be-
cause a cluster center represents an image in our case, the centers
are not altered (i.e., merged), but the “weaker” center is removed.

Our algorithm replaces a cluster center based on the following
measure. We compute the number of times a cluster center was a
best match, limited to once per time window Δt (e.g., a day), which
is divided by its age (i.e., a multiple of Δt). Then, the cluster cen-
ter with the lower value is deleted. Hence, a cluster center is only
removed (i) if another nearby center exists and (ii) if it represents
a scene that has not been observed for a long time. A cluster cen-
ters that is very distant to every other center remains in the model,
implementing our definition that everything is usual that has been
observed in the past. Alternatively, those clusters which were not
best matches for a long time could be removed instead.

The cluster centers with the most support are the typical, repre-
sentative images.



(a) After the first day.

(b) After one week.

(c) After two months.

Figure 7: Summary of a data stream from a public webcam at Time
Square (3 am – 4 am). Three clusters (images) found by our algorithm
are shown after observing the scene for one day, one week and two
months.

3.4 Implementation
The system consists of two parts. A maintenance phase is con-

ducted regularly after Δt, e.g., daily, during which the clustering
algorithm integrates newly observed data. Then, S� and θalarm

are computed from the updated model. Note that θalarm can be
calculated for the first time after 2Δt because it relies on S�. Dur-
ing the online detection phase, the algorithm classifies outliers in
real-time based on Eq. (5).

This evaluation is very efficient, because θalarm is computed in
the maintenance phase. Second, the algorithm can usually classify
an observation as inlier without finding its best match. According
to our definition, a scene is usual if at least one similar data point
has been observed in the past. For this purpose, the cluster statis-
tics described above is used to first compare the input to the most
frequently matching cluster centers. Third, the search space can be
reduced by only considering cluster centers with timestamps that
correspond to the observation (i.e., having the same time modulo
the pre-specified Δt). This not only results in speed-up, but also
adds time dependency to our approach. Thus, a scene is usual only
around a certain time of day (e.g., an empty street is normal at night
but not during the day).

3.5 Experiments
We recorded a dataset from a public webcam in New York (US)

[1] around the clock during two months with a framerate of 16 im-
ages per minute. An image has a resolution of 640 × 480 pixels,
resulting in more than 0.5 TB of data. The datasets covers scenes
that capture a large variety of potentially interesting events under
a large range of conditions (i.e., depending on the weather, illumi-
nation, time of day, etc.). Individual objects such as people, cars
or animals have a size of only a few pixels, such that object detec-
tion and tracking is difficult. We demonstrate that our algorithm (i)
finds representative images that are typical for a data stream and
(ii) detects novel, unusual scene images.

(a) 8 am – 9 am

(b) 12 pm – 1 pm

Figure 8: The most different of the 20 most frequent clusters (repre-
sentative images) found by our algorithm for different times of the day
after observing the scene for two months.

(a) Input image.

(b) Best matching cluster center.

Figure 9: (a) Input images from the Time Square dataset that are clas-
sified as usual, together with their best matches (b). The right image
should rather be classified as unusual but is too similar to the best
match.

Parameter Settings We choose the parameters θmms = 0.95
and palarm = 1%, which remain identical for the sequences. The
number of cluster centers is set to K = 10, 000, limited by the
physical memory. On a standard workstation (Intel P4 3.2 GHz, 2
GB), the runtime of the algorithm during the test phase is about 200
ms and the maintenance phase is in the order of minutes for our
MATLAB implementation. Because the framerate of many pub-
licly accessible webcams is below 5 fps, our algorithm is able to
process their data streams in real-time. We disrupt the online eval-
uation phase once a day for the maintenance phase during a certain
hour at night.

Evaluation In figure 7, we show some of the top-ranked cluster
centers according to their frequency. As can be seen, a wide vari-
ety of situations as well as illumination and weather conditions are
represented when observing the scene for a longer period of time.
The longer the algorithm runs, the more variety is represented (e.g.,
rainy situations). Also less frequent situations (e.g., construction
work) are represented because the respective cluster center is very
different to the others and hence will not merged. These images
can be used to summarize a data stream. In figure 8, the most dis-
tinctive of the 20 most frequent cluster centers are shown for two
other times of the day.



Figure 9(b) shows typical matches found for the input images in
figure 9(a). The first two scenes are correctly classified as usual.
In the right image, a low-loading truck has stopped at the roadside,
which intuitively should be an unusual scene. Because an excep-
tionally similar image is found (below), this scene is also classified
as usual. However, by simply looking at this single image, humans
probably would not detect this event neither.

In figure 10, we plot Pusual on a logarithmic scale for three rep-
resentative hours of the day, and we show selected scenes classified
as unusual. In the beginning of the timeline, some scenes are classi-
fied as unusual because nothing similar has been observed before,
but they appear normal to a human. As soon as enough data is
observed, the system is stable. Although it is hard to intuitively de-
fine when a scene should be unusual, the classified outliers are very
plausible. Our algorithm detects unusual scenes with (i) global in-
cidents, covering a large image region (10(f), 10(i), 10(j), 10(o)),
or (ii) very atypical, local events (10(b), 10(d), 10(k), 10(n), 10(q),
10(r)). Local events that are too small to be detected directly as
well as events related to motion can also be detected, if they affect
a larger area of the scene. For example, our system can detect the
illegally parked car in figure 10(p), because other cars are forced to
cross the lane markings.

4. CONCLUSION
We have argued that several image mining applications call for

a completely automatic pipeline. As examples, we have discussed
ways to deal with images from landmarks and from webcams. As
already stated in the intro, there are other source of images as well,
which would require yet different ways of dealing with them.
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Figure 10: Detected unusual scenes from the Time Square dataset (see text). During the update, the images are subsequently added as new cluster
centers to the memory, becoming usual. However, most probably they will not appear often and will thus be detected as rare.
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