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Abstract

Reliable 3D object tracking can provide strong cues for
scene understanding. In this paper we exploit inconsisten-
cies between measured 3D trajectories and their predictions
using a physical model. In a set of proof-of-concept exper-
iments we show how to retrieve the camera rotation and
translation and how to detect surfaces that are hard to vi-
sually discern by simply tracking a rigid object. Further-
more we introduce the class distinction between active and
passive objects. Prototype examples demonstrate the us-
ability of the visual input for this type of classification. In
all the presented experiments, additional information and
a deeper understanding about the scene can be obtained,
which would not be possible by analyzing solely the image
measurements.

1. Introduction

One of the fundamental goals of computer vision re-
search is to understand what an image is depicting and to
reason about the scene, its objects and their behavior. A lot
of research effort has been spent over the last decades in or-
der to get closer to this ambitious objective. Many methods
for detection and tracking of individual objects and analysis
of their behavior have been developed as well as methods
for global scene categorization. Most of these algorithms
process only the pixel data from the image but do not take
into account the real 3D scene structure.

Images can, in theory, depict scenes which are physically
implausible. Famous examples are the drawings by M. C.
Escher, one of which is shown in Fig. 1(a). By being aware
of the 3D environment that is described by the image, we
can enforce the objects to behave according to the laws of
physics, which only makes sense when considering the real
3D world, as sketched in Fig. 1(b).

In this paper we propose to analyze trajectories of ob-
jects taking into account basic physical knowledge for scene
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(a) Escher: Waterfall, 1961

(b) Understanding the 3D world

Figure 1. (a) M. C. Escher showed the importance of physics to
judge if the depicted scene can exist in reality. (b) In our work we
aim at reasoning in the 3D world and not on a 2D projected image
of the scene. As we are focusing on real-world scenarios, we fur-
thermore explore the inconsistencies between measurements and
physically plausible predictions of objects movement for scene un-
derstanding.

understanding. Predicted, physically plausible trajectories
are compared to actually observed ones. As we are focus-
ing on real-world scenes, the laws of physics must hold and
predictions according to this physical model should explain
the observations. Inconsistencies provide additional infor-
mation about the objects and the environment. For exam-
ple, the knowledge of gravity and thus of the expected be-
havior of free falling objects already gives an idea about
the rotation and motion of the camera with respect to the
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(a) Rotation of the camera with re-
spect to the world

(b) Invisible structures and external
forces

(c) Motion of the camera with re-
spect to the world

(d) Passive vs. active objects

Figure 2. Reasoning about the scene and its objects based on
inconsistencies between physical predictions and the observed
world. (a) Just by analyzing the physical behavior of the wine flow
one has a very clear idea of the camera rotation with respect to the
world. (b) Inconsistencies might be explained by introducing hid-
den scene structures or external forces and hence allow for a more
complete understanding of the scene. (c) Despite the main image
target has a variable appearance, the water flow alone can give an
idea of the relative motion of the camera between the two images.
(d) Whereas the behavior of the runner is hard to predict, the be-
havior of the statue is predictable, despite their similar appearance.
This gives evidence that the runner is an active object whereas the
statue is passive, because its (non-)motion is only influenced by
the laws of physics.

scene (Fig. 1(a,b)). Other inconsistencies can be explained
by introducing external forces or hidden scene structures
(Fig. 1(c)). Finally, the behavior of certain classes of objects
might be only described by introducing internal forces. This
leads to the classification of active objects, which distin-
guish them from passive objects that only undergo external
forces like gravity (Fig. 1(d)). We show a series of experi-
ments that distinguish such classes based on their observed
motion. This classification, very difficult to solve with only
appearance features is relevant for many fields, including
object categorization and autonomous robot navigation.

1.1. Related Work

The fact that an image is a 2D projection of the 3D world
has been widely used in computer vision for various ap-
plications, such as measuring distances in the world [10,
4]. Furthermore, the beneficial role of including physical
knowledge was already noticed in early computer vision
works [16]. In a similar context, in [2] the authors estimate
some physical simulation parameters, in order to fit a model
to the 2D measurements, but they need a very good man-
ual initialization of the object position and velocity, which
is not necessary in our case. More recently, physical con-
straints have been used in visual tracking to impose motion
models [3, 22] or to restrict tracking to only allow for phys-

ically plausible configurations [12, 17].
Finally, it has been shown that using additional informa-

tion from the world limits the number of free parameters,
e.g. [5] uses a gravity sensor to reduce the number of point
correspondences for relative pose estimation. In general,
physical knowledge plays an important role in autonomous
robotics, e.g. [20]. What we propose goes instead in a dif-
ferent direction: We use inconsistencies of the observed tra-
jectories with respect to a current physical model to infer
enhanced scene properties. In our case, tracking is a tool
rather than an objective. In [3] contact dynamics are esti-
mated in terms of forces, and there is a toy 1D experiment
with a vertically bouncing ball. The forces are only qualita-
tively estimated because the mass of the ball is not known.
In our case instead we use the full 3D measurements, but
our purpose is to estimate surfaces, both in terms of 3D lo-
cations and normals. Most common approaches for scene
interpretation do not take into account the 3D structure of
the scene. Whereas it has been shown that context helps in
object detection [21, 25], recognition [18], tracking [7] and
scene understanding [15], these approaches are only work-
ing in the 2D image plane. Sometimes 3D structure is used
as a constraint (e.g. the estimation of the ground plane) in
order to improve detection/tracking results [14].

Hoiem et al. [11] and Saxena et al. [23] were among the
first to exploit some geometric analysis to better interpret
the scene. More recently, it has been shown that analyzing
the 3D scene reduces ambiguities and is a new paradigm
for scene understanding [8]. For example, it enables the use
of functional features which improve object detection [6]
and human centered scene interpretation [9]. The work by
Gupta et al. [8] goes in a direction similar to ours. From a
single image, they reason about the 3D structure and addi-
tionally make use of simple physical constraints (e.g., phys-
ical stability checks). However, they focus on static scenes;
our approach is complementary to theirs and reasons about
dynamics. By analyzing the object trajectories in the 3D
space, we explore inconsistencies with a physical model of
the world to infer important properties of the scene, which
could not be estimated otherwise.

2. Physics as Universal Invariant

In the proposed framework, our purpose is to reason
about the scene through the analysis of moving objects in
the 3D environment. We assume to have as input some
knowledge about:

Environment E: The environment defines all the pa-
rameters of the world model, i.e. it defines the world co-
ordinate system, the underlying 3D structure, the shape of
moving objects and their material properties.

Trajectories T: Moving objects in the 3D environment
can be (at least partially) detected and tracked reliably over



Figure 3. Inconsistency
between the measured
trajectory of a bouncing
ball (blue) and its predic-
tion (red) computed using
the initial velocity. In this
case it is due to a surface
which was unknown to
the system before the
experiment.

time.

Physical laws L: A set of universally valid physical
laws which determine how objects move and interact in the
environment.

Since we assume that we are observing a real-world
scene, the laws of physics must hold. If our observations
are not consistent with the expected motion, either some ex-
ternal or internal force must have acted, as shown in Fig. 1.

2.1. Inconsistencies between observations and pre-
dictions

Let us consider

Tt := [xt, yt, zt]
T (1)

as the 3D position of an object at time t in the world coor-
dinate system. Over time, T is the trajectory of the object,
which in our case is measured through an RGB-depth sen-
sor. Note that other 3D devices can be used as well.

Given the environment E, the set of physical laws L
would univocally determine the trajectory T of the analyzed
object if no other forces were applied. Hence, based on the
history Tt′<t of the object position1 we predict its location
T̂t for the current time step as

T̂t = f(Tt′<t,E,L). (2)

More details about the concrete implementation are given
in Sec. 3, when we illustrate some of the applications. An
example of predicted and observed trajectories for the case
of a bouncing ball is depicted in Fig. 3.

The predicted quantities are compared with the observa-
tions as

Inconsistencyt :=

{
1 if ||T̂t −Tt||2 > θ
0 otherwise

(3)

In other words, a prediction is said to be consistent with the
actual observations when the distance of the target’s posi-
tion in 3D space to its expected position is below a certain

1Please note that, when using the motion history, also higher order
terms such as velocity and acceleration are assumed to be computed.

threshold θ, which captures the inaccuracies due to (i) im-
perfect modeling (e.g., neglecting frictions) as well as to (ii)
measurement uncertainties by the sensor. According to our
experimental validation, we set the value of θ to 6mm in all
our experiments, which lead to consistent and meaningful
results.

2.2. Exploiting inconsistencies

As stated above the detected inconsistencies must be ex-
plained. For this reason our knowledge of the objects and
of the 3D environment can be revised and refined after
such detections. For a better illustration of this important
paradigm we present three proof-of-concept scenarios. In
all three examples physical inconsistencies are explored in
order to acquire a deeper understanding of the scene, which
would not have been possible if considering only the image
measurements alone.

The shown scenarios consider different assumptions and
let us reason about unknown variables of the 3D environ-
ment or of the objects that move through it, as described in
Fig. 1. First, we assume only passive objects in the envi-
ronment without any forces exerted during the motion other
than gravity. The object motions then strictly follow the
laws of physics that are consistent with our scene interpre-
tation. This allows us to estimate the camera pose (at least
partially) with respect to a world reference. Secondly, the
interactions of the objects with the scene are studied and
invisible structures are retrieved. In the third scenario, we
introduce the distinction between active and passive objects.

3. Experimental Results

3D data. Several sensors are nowadays available for
acquiring 3D data. This can be done using multi-camera
setups, depth cameras, or to some extent even from a sin-
gle RGB image, e.g., [11]. If the measurements are accu-
rate enough and taken at a sufficiently high sampling rate,
e.g. through consumer depth cameras, the obtained data can
give reliable estimates of 3D position, velocity and accel-
eration of captured objects. For our experiments we used
the Microsoft Kinect, which can capture an image size of
640 × 480 pixels with the corresponding depth values at a
frame rate of 30 Hz.

Tracking. In the first set of experiments, we track a
tennis ball. The 3D tracking can be easily performed on
RGB-depth data in real time, by performing a least squares
fitting of a sphere of known radius to the measured 3D point
cloud. This gives, at every time step t, the 3D location of
its center Tt. Since in this case the structure of the environ-
ment E is assumed to be known, measured 3D points which
belong to the scene can be filtered out, see Fig. 4. The 3D
location of the ball center, together with the time stamp pro-



(a) RGB (b) Depth map

(c) Point cloud (d) Fitted sphere

Figure 4. In order to measure the position Tt of a the tennis ball
we perform a least square fitting of a sphere to the 3D point cloud
obtained through the depth image.

vided by the camera, is the only input needed by our system
in this experiment.

3.1. Camera Pose Estimation

When observing a moving passive object, information
about extrinsic camera parameters can be inferred by simply
tracking the object and analyzing its trajectory. If there is no
interaction with the environment, then gravity is the only
force acting on the object (air friction is considered negli-
gible in all our experiments). This can provide information
about the camera orientation and translation with respect to
the world reference system. In fact, as we assume the grav-
ity to be perfectly vertical, i.e., g = [0, 0,−9.81]T m/s2

a detected inconsistency can be explained by analytically
computing the best solution, i.e. making the observations
as consistent as possible with the physical model. In the
context of this experiment we analyzed two different sce-
narios: (i) Rotation around the principal axis by the camera
and (ii) pure translation by the camera.
Assumptions: The tracked object is passive and no external

forces are present during motion, except gravity.
Inconsistencies: The measured motion relative to the cam-

era is not consistent with the physical model.
Solution: Adapt the camera pose in order to render the ab-

solute object motion to be physics-compliant.

(i) Camera rotation estimation. In the first experiment
we rotate the camera around its principal axis over a cer-
tain angle α to obtain a tilted view during capture. We then
tracked the motion of a bouncing tennis ball, which is a pas-
sive object, during a time interval without interactions with
the environment. As depicted by Fig. 6, we estimated its 3D

(a)

(b)

Figure 5. (a) Two successive sample frame from the video se-
quence used as input to estimate the camera orientation. (b) The
same frames after rotation of ᾱ = 18 degrees and cropping.

(a) observed (b) rotated (gravity pointing
downwards)

Figure 6. Estimating the camera orientation: Measured trajectory
T of the ball and computed frame-wise acceleration â.

acceleration ât at each time step t. This can be computed
quite accurately knowing the timestamps corresponding to
each one of the 3D position measurements:

v̂t =
Tt −Tt−1

∆t
, ât =

v̂t − v̂t−1

∆t
, (4)

where ∆t indicates the actual time difference between the
measurements taken at time step t and t − 1. Then, by av-
eraging such acceleration estimations at all the considered
time steps, we obtain a reliable measurement of the direc-
tion of the gravity in the scene. In this experiment, the av-
erage magnitude of the measured acceleration vector was
||ā||2 = 9.72 m/s2. In the depicted case the recovered ori-
entation α̂ of the camera with respect to the horizontal plane
was of ᾱ = 18 degrees, which is consistent with the video
sequence shown in Fig. 5.

(ii) Camera translation estimation. In a second ex-
periment we instead assumed the camera orientation to be
horizontally constant and translated the camera manually
during the capture of the video. Also in this case we tracked



Figure 7. Four sample frames from the video sequence used as input to estimate the camera translation. Standard structure-from-motion
approaches would face both the problem of missing texture and - if that could be resolved - of having an unknown relative scale (and
trajectory) between the independently moving ball and the background.

(a) trajectories (b) estimated camera translation

Figure 8. Estimating the camera translation: (a) Predicted trajec-
tory of the ball in a global reference (red) and measured trajectory
in the local camera reference (blue). (b) Inferred camera move-
ment to explain the inconsistencies shown in (a).

the motion of a bouncing tennis ball during a time interval
when no interactions with the environment E occurred. By
measuring, as described in Eq. (4), the 3D velocity of the
ball at the beginning of the sequence, we could then com-
pute a frame-by-frame prediction T̂ of its 3D position. This
was performed considering that the only force, and thus ac-
celeration, experienced by the ball was the gravity, and ne-
glecting the effect of the air friction:

T̂t = Tt−1 + v̂t−1∆t+
1

2
g∆t2. (5)

By then matching T̂t with the measured trajectory T, we
could obtain the time evolution of the camera 3D position
through a simple difference. In the experiment, the transla-
tion of the camera was performed manually approximately
along a straight line. The distance from the start point to the
end point was 15.5 cm, and our estimate yields to 16.5 cm.
Please note that, since the only element present in the scene
is the tracking target, as shown in Fig. 7, typical approaches
for camera motion estimation would fail in this case. Fig. 8
shows the predicted motion and the measured trajectory for
this experiment.

Potential practical applications. As briefly explained

throughout this section, calibration of the extrinsic parame-
ters of depth cameras can be improved by additional mea-
surements of moving objects in the environment. This is
particularly relevant for pre-existing sequences, for which
calibration data is not available. The trajectory of passive
moving objects, if present in the scene, can be used to obtain
a rough estimate of the orientation of the camera. Further-
more, Structure-from-Motion (SfM) has a problem with dy-
namic scenes, even if all objects are rigidly moving. There
exist unknown relative scales between all objects that move
with respect to each other. There have already been studies
to analyze to which of those scales different motion trajecto-
ries correspond [19]. Looking for those trajectories that are
consistent with physical laws is an important cue for dis-
ambiguating the SfM process, which has not been studied
in [19].

3.2. Invisible Surface Detection

In our second experiment, we explored an environment
whose 3D shape is a priori unknown to the system, simply
through the tracking of a tennis ball and the awareness of
the forces controlling its motion. We assume that the cam-
era is static and that the ball is a totally passive object. If
there are no forces except gravity, then the motion can be
described through the standard physical equations of a free
falling body, see Eq. (5). However, if this is not the case,
then some external forces, invisible with respect to our sen-
sor, must have interacted with the ball.
Assumptions: The tracked object is passive and the camera

is static.
Inconsistencies: The measured motion is not consistent

with the physical model.
Solution: Adapt (infer) the scene structure.

Setup. We placed the Kinect on the ground, such that
the principal axis was horizontal. This made the ground
plane invisible to the camera, because the structured light
pattern cannot be properly projected onto it and then recov-
ered in this configuration. We also put inside the scene a
transparent plastic box, whose shape could not be captured
either by the depth camera. In this configuration, the depth



Figure 9. RGB view of the analyzed scene. The horizontal ground
plane and the plastic box cannot be captured by our consumer
depth camera. This makes the depth image corresponding to this
scene totally blank.

(a) Side view of the reconstructed scene

(b) Top view of the reconstructed scene

Figure 10. Estimating interactions: Reconstruction of the environ-
ment through the detected interactions.

Figure 11. Estimating interactions: Trajectory of the tracked ball
and detected interactions with the environment.

measured was totally blank for the entire scene, in contrast
with the RGB input, shown in Fig. 9.

Observations. We bounced a tennis ball in the scene
several times, off the ground and the transparent box.
Tracking of the ball was performed as described at the be-
ginning of the section.

Inconsistencies. The ball’s measured position Tt, ob-
tained by the tracker, was continually compared to a pre-

dicted T̂t computed through Eq. (5). If an inconsistency
was observed, according to Eq. 3, it was considered to be
the effect of an interaction. Such interaction must have
been due to some entity which was inside the scene but at
the same time not captured by the depth camera. Hence,
we adapted the modeled environment accordingly: A small
surface at the location of the interaction and orientated fol-
lowing the motion just before and just after the interaction
was inferred as shown in Fig.10. For comparison the ground
plane and the transparent plastic box are overlaid as well.

Implementation detail. Since the motion of the tracked tar-
get is very fast and the data provided by the depth camera
is discrete, it is not guaranteed that the exact moment of the
interaction is captured. When an interaction is detected, the
system performs an extrapolation of the trajectory of the tar-
get object, by fitting a parabola to both a few measurements
before and after the inconsistency. The closest 3D point be-
tween the 2 parabolas was considered as the point where the
interaction actually occurred, and the orientation obtained
by averaging the tangents of the 2 parabolas in their closest
location to such point is assumed to be the direction of the
interaction (i.e., the normal to the surface that caused the
interaction). This is shown in Fig 11.

Quantitative results. Based on the inferred interaction
surfaces two planes could be estimated: One correspond-
ing to the ground plane and one to the top of the box. An
evaluation of the obtained results is presented in Table 1.

Quantity Estimated Actual Error

Box Height 92 mm 90 mm 2 mm
Box Top Orientation 4.8◦ 0◦ 4.8◦

Ground Orientation 5.6◦ 0◦ 5.6◦

Table 1. Estimated Scene: Quantitative results

Potential practical applications. As demonstrated in
several research works, e.g. [14, 11], automatically deter-
mining the ground plane(s) inside a scene greatly increases
detection and tracking performances, and helps scene un-
derstanding. With our approach, tracking passive objects
moving in space helps scene structure estimation and im-
proves camera calibration and readjustment. Typical appli-
cations might involve sport footage, including for example
soccer, tennis or basketball videos.

3.3. Active Object Detection

In the last set of experiments we assume a known envi-
ronment and a static camera. Thus, the tracked objects must
move according both to the physical laws and the structure
of the environment. We can then make a distinction between
the objects which can be considered as passive, which just
react to the surrounding environment, and the active objects,



which have some internal source of energy that makes them
move in an unpredictable way.

Assumptions: The scene is known and the camera is static.
Inconsistencies: The measured motion is not consistent

with the physical model for passive objects.
Solution: The object is considered as active, which intro-

duces the active vs. passive object classification.

Tracking. A pre-processing step removes all the points
belonging to the known 3D scene. To allow for objects of
a generic shape, the tracking is done using frame-by-frame
ICP [1] on the point-cloud provided by the depth camera.
This gives a relative frame-to-frame motion which is used
to estimate the object’s trajectory.

Setup. We tested our approach on two active objects,
namely an autonomous flying robot and a spring-powered
toy car, and on a passive object, a tennis ball. To compute
the predictions T̂t of their trajectories, we used the formula
of Eq. (5), again assuming friction to be negligible.

Inconsistencies. As in the previous experiments, at each
time step t we have a measured location of the object Tt,
given by our tracker, and a predicted location T̂t given by
the physical model. If there is discordance (Eq. (3)) be-
tween the locations, and interactions are not possible given
the known structure of the environment, then the object
must have some internal source of energy that makes it act
against the physics of free fall. In other words, the object is
considered to be active. If on the contrary the object does
behave following the prediction given by the model, then
the object is considered to be passive.

Results. In the case of the autonomous flying robot, the
difference between the measured and estimated trajectories
is very clear (at all time instances) and the object can be con-
sidered active. Details are shown in Fig. 12. On the other
hand, in the case of the tennis ball, the predicted trajectory
was very consistent with the measured one, as visible in
Fig. 13. This is an important cue in defining it as a passive
object. Finally, the spring-powered toy car first moves along
a straight line, then makes a turn and again moves along a
line, all with nearly constant velocity. Inconsistencies with
respect to the model are mostly detected when the toy car is
turning, see Fig. 14.

Potential practical applications. Estimating the nature
(active vs. passive) of surrounding objects, i.e. dynamic
obstacles, is one if the main tasks of autonomous path plan-
ning [24]. Knowing the behavior or a rough estimate thereof
would be very beneficial in terms of saving computation
time and improving accuracy. In terms of attribute based
object categorization [13], knowing objects to be active or
passive will help object class recognition to consider fewer
options, e.g. humans vs. statues, as shown in Fig. 1(d).

(a) Setup (b) Observed tra-
jectory

(c) Inconsistencies

Figure 12. (a) An autonomous robot flying around and the corre-
sponding (b) observed trajectory. (c) Measured inconsistencies of
the observed trajectory with the predicted one. The dotted line de-
picts the chosen threshold, set at 6mm, while the red line indicates
a moving average, meant to stabilize the results. The high predic-
tion errors and hence detected physical inconsistencies give strong
evidence that the observed object is active.

(a) Setup (b) Observed trajectory

(c) Inconsistencies

Figure 13. (a) A tennis ball and the corresponding (b) observed tra-
jectory. (c) The ball behaves following the model and is therefore
consistent with our hypothesis of being a passive object.



(a) Setup (b) Observed trajectory

(c) Inconsistencies

Figure 14. (a) A spring-powered toy car and the corresponding
(b) observed trajectory. (c) When the car is going straight the ob-
servations match the prediction well, since we assume a constant
velocity motion model on the horizontal plane. However, once the
car is turning, the high prediction errors indicate physical incon-
sistencies and give evidence that the observed object is active.

4. Conclusion
In the presented set of proof-of-concept experiments, we

have shown how a robust estimation of the 3D trajectory of
an object and the detected inconsistencies between such es-
timation and a simple physical model, i.e. of free fall, can
help in obtaining information about the scene which would
not be obtainable otherwise. As noted throughout the paper,
our contribution is not meant to be a deep analysis about
the accuracy of the obtained results, but rather to suggest
a largely unexplored research direction. A possible exten-
sion of the presented work would involve more accurate 3D
measurements and an extended set of physical rules. Accu-
rately modeling friction would for example allow to lower
the tolerance threshold and thus achieve a higher confidence
in the conclusions.
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