
Hunting Nessie – Real-Time Abnormality Detection from Webcams

Michael D. Breitenstein1 Helmut Grabner1 Luc Van Gool1,2

1Computer Vision Laboratory 2ESAT-PSI / IBBT
ETH Zurich KU Leuven

Abstract

We present a data-driven, unsupervised method for un-
usual scene detection from static webcams. Such time-lapse
data is usually captured with very low or varying fram-
erate. This precludes the use of tools typically used in
surveillance (e.g., object tracking). Hence, our algorithm
is based on simple image features. We define usual scenes
based on the concept of meaningful nearest neighbours in-
stead of building explicit models. To effectively compare
the observations, our algorithm adapts the data representa-
tion. Furthermore, we use incremental learning techniques
to adapt to changes in the data-stream. Experiments on sev-
eral months of webcam data show that our approach detects
plausible unusual scenes, which have not been observed in
the data-stream before.

1. Introduction
Novelty detection is a classical task in computer vision.

Unfortunately, most approaches are not suitable for perma-
nent, time-lapsed data-streams like webcam footage. First,
many methods are based on a constant, previously trained
model of normality [15, 19, 31, 33]. However, the normality
concept in permanent data-streams might change constantly
(concept drift), thus the model needs to be learnt online and
adapted permanently. Second, most algorithms are based
on information that is very difficult to extract robustly from
webcams. Typically, the framerate is very low or even not
constant, which prevents the use of optical flow [5, 18] or
object tracking [13, 21, 28].

To handle these difficulties, we present a purely data-
driven approach, which is not object-class specific. The
method is based on simple, static features and aims at de-
tecting atypical configurations in a scene. Although a single
incident may be too small to be captured directly, it can af-
fect a greater part of the scene, thus changing the context
(c.f ., [30]). Similarly, unusual motion (e.g., the speed of
a car) can also cause abnormal constellations, which can
be found. For example, our system can detect the illegally
parked car in Fig. 1 (top left, in the center of the image),
because other cars are forced to cross the lane markings.

Figure 1. Can you spot the abnormalities in these scenes, which
are captured from a public webcam – like our system?

Over the last years, data-driven methods that use large
collections of publicly available images (e.g., from Flickr)
have been applied to many tasks in computer vision
(e.g., [12, 24, 30]). Recent years also witnessed the pro-
liferation of publicly accessible webcams and surveillance
cameras. They record time-lapse data over long periods of
time. A growing amount of work is being published to
explore such data as well. However, most work focuses
on estimating imaging conditions such as illumination and
color changes, which can be used, e.g., for camera geo-
location [16, 29], shadow removal [32], seasonal variation
detection [14], or video synopsis [25]. In contrast to previ-
ous work, we are primarily interested in capturing and rea-
soning about the content of the scene itself. Our target is to
automatically learn what usually happens in a scene, and to
detect anomalies, such as those shown in Fig. 1.

In this paper, we first give our definition of unusual scene
detection and then propose a new approach for permanent
data streams, which employs the concept of meaningful
nearest neighbours [6, 22]. The main idea is that every-
thing is usual that has been observed in the past (or in a
specified time-frame, respectively). Our algorithm checks
if a new observation is a statistical outlier and thus should
be classified as unusual, while constantly adapting its model

of normality. There exists a substantial body of work to ef-
fectively compare high-dimensional data by learning a data-
dependent similarity measure, e.g., [20, 9]. In contrast, we
keep the similarity measure fixed and adapt the data repre-
sentation instead. For this purpose, our algorithm selects
the most representative subset of a hierarchical feature set,
depending on the complexity of the data.

Using meaningful nearest neighbours for classification
has several advantages. Most importantly, it allows the
model to adapt permanently, and to classify outliers with-
out having to manually define a nearest neighbour distance
threshold, which would have to change constantly as more
data is observed. Instead, our approach classifies a data
point relative to previous observations by considering the
distribution of nearest neighbour distances in the memory.

We show that our approach is suitable to effectively de-
tect plausible unusual scenes in webcam footage. Possible
applications include a real-time alert system for surveillance
cameras, where a human observer typically has to monitor
a large number of cameras at the same time [8]. To sup-
port a human supervisor, our algorithm can rank different
video streams. Thus, the supervisor can focus his attention
to those streams where it is much likely needed currently.
Furthermore, more cameras can be observed by one super-
visor. A second application is a system to automatically
generate a summary of the past day for a particular we-
bcam, by selecting interesting, out-of-the-ordinary images
(see [10]).

The paper is structured as follows. In Sec. 2, we present
our approach, which raises the issue of data representation,
addressed in Sec. 3. In Sec. 4, we describe the implemen-
tation of the system and show that it is suitable to detect
plausible unusual scenes in Sec 5.

2. Abnormality Detection from Continuous
Data-Streams

Given a continuous (i.e., ongoing, permanent) data
stream S = {x1, . . . , xt−1} (e.g., of images that are rep-
resented by feature vectors xi ∈ IRn in a high dimensional
space), our target is to classify the next example xt as nor-
mal if it can be explained by previous data (i.e., it is similar)
and as abnormal otherwise. Many existing methods for ab-
normality detection work with offline data and previously
learn a static model (or normal concept), which remains the
same after a training phase is completed. However, data dis-
tributions in continuous data-streams are hardly ever con-
stant. Therefore, it is likely that the normal concept changes
over time, either temporally or permanently [27].

2.1. Abnormal, Unusual and Rare Scenes
To define an abnormal scene, we differentiate between

the terms unusual and rare. A scene is usual if a very
similar scene has been observed at least once in the past

(c.f ., [33]), formulated as follows:

∃xi, i ∈ {1, . . . , t−∆t} : xi ∼ xt (1)

Because data points that appear temporally close may be
correlated, we introduce a time delay ∆t (e.g., a day). How-
ever, a usual scene can appear frequently or rarely. Thus,
the frequency of a scene xt is proportional to the number of
data points it is similar to

card({xi|xi ∼ xt, i ∈ {1, . . . , t−∆t}}). (2)

The differentiation between unusual and rare is impor-
tant especially in the context of concept drift. The first time
a sunny day is observed from a London webcam, an image
of the scene will look very differently than everything be-
fore. Thus, the scene is unusual. However, if more sunny
days are observed, they are becoming usual but may still be
rare. In this work, we primarily concentrate on finding un-
usual scenes but still show how to integrate scene frequency
in our method. Similar to our definitions for scenes, the
integration of temporal information would lead to the defi-
nition of the terms activities and events, which however are
not the scope of this paper.

2.2. Outlier Classification using Meaningful Near-
est Neighbours

A simple approach to detect an unusual scene from a
continuous data stream based on these definitions is to store
all observed data in a memory

M = {x1, . . . , xt−∆t}, (3)

and to find the best matching sample x?
i for a new data point

xt (i.e., the nearest neighbour inM). Then, the similarity
score of this best match

s?(xt) = max
xi∈M

sim(xt, xi) (4)

is compared to a threshold for classification, where sim(·, ·)
denotes the similarity of two data points. Different similar-
ity measures could be used, see [26] for a review.

However, it is not clear if the nearest neighbour is mean-
ingful for a high-dimensional space [6], because most points
are equally distant to a query point. Thus, it may be difficult
to find an appropriate threshold to classify a query point as
outlier based on its distance to the nearest neighbour. Fur-
thermore, such a similarity threshold would have to change
permanently, as more data is observed and included in the
memory.

We propose the following approach based on the con-
cept of meaningful nearest neighbours (Fig. 2). We com-
pare the similarity score s?(xt) of the current input and the
best match in the memory with the distribution S? of the
similarity scores of all nearest neighbours in the memory

Figure 2. Our approach for unusual scene detection using mean-
ingful nearest neighbours: The similarity score s?(xt) of the input
xt and x?

i , the best matching sample from the memoryM, is com-
pared to the distribution S? of similarity scores s?.

M obtained so far. In the beginning, M will not contain
a representative set of images, hence S? is not meaningful
yet. However, as time goes by, more and more images are
observed and integrated, such that the memory will contain
a representative set of typical images of the scene.

Then, a new data point xt is classified as an inlier (and
thus as usual), if its similarity score s?(xt) is likely to be
generated from the distribution S?. Consequently, our algo-
rithm computes the inlier probability Pusual of a new data
point xt by comparing its similarity score s?(xt) with the
cumulative probability distribution FS?(·) of S?

Pusual(s?(xt)) =
∫ s?(xt)

s=0

S?(s)ds = FS?(s?(xt)) (5)

Finally, xt is classified as unusual using the probability
threshold palarm

Pusual(s?(xt)) < palarm. (6)

This can be rewritten using Eq. (5) and the inverse function
F−1

S? (·) of FS?(·) to compute a threshold for the similarity
score:

s?(xt) < F−1
S? (palarm) = θalarm. (7)

This approach has several benefits. First, the normal
model is purely data-driven. Thus, it is represented by the
data points themselves, which allows the model to change
in order to become more sensitive if more data is observed.
Second, no prior knowledge is necessary, but could be in-
corporated by previously adding manually selected data to

the memory. Third, no scene-specific, manually tuned sim-
ilarity threshold for classification based on the distance to
the nearest neighbour is used. Such a threshold would have
to be changed permanently, as more data is observed and
included in the memory. Instead, the meaningful nearest
neighbour approach classifies a data point relative to pre-
vious observations, by comparing it to the distribution of
nearest neighbour distances in the memory. Thus, the model
adapts automatically and permanently.

3. Adaptive Data Representation
In general, the observed data xi ∈ IRn spans a high di-

mensional space, which is populated only sparsely. There-
fore, all data points are equivalently distant from each other,
thus S? might not be significant. Thus, we propose to adapt
the data representation, depending on the model complex-
ity and the observed data.

Model. A model M := 〈C, R(·)〉 consists of K clus-
ter centers C = {c1, . . . , cK} ⊆ X and the representation
function

R(·) : IRn → IRm, (8)

which transforms the data points to a m-dimensional sub-
space (usually m � n). Clustering is applied to the trans-
formed space, however, the cluster centers c are (selected)
images themselves.

We evaluate how accurately the model M represents the
data X by computing the mean of the maximal similarity

mms(X , C, R(·)) =
1
|X |

∑
x∈X

max
c∈C

sim(R(x), R(c)). (9)

The mms-criterion measures the average similarity of ob-
servations x ∈ X and their best matching cluster centers
c ∈ C. If the mms-value is high, the data is represented
exactly.

Representation. Every point belonging to the underly-
ing data generation process should be represented as exactly
as possible by our model. More formally, given a fixed K,
the representation function R(·) should be chosen such that
the mms-value is above a threshold θmms, i.e.,

mms(X , C, R(·)) ≥ θmms. (10)

On the other hand, the cluster centers should be diverse
in order to capture the whole variety of the data. For ex-
ample, although the trivial representation R(x) = 1 fulfills
Eq. (10), every data point would collapse to the same point.
This is obviously not a good representation, although result-
ing in mms(X , C, R(·)) = 1 (the maximum value). Thus,
we are interested in a representation that describes the data
as exact as possible but is still diverse enough to differenti-
ate between cluster centers, i.e., the individual cluster cen-
ters should be distant to each other.

We propose to adjust the system parameter θmms to
adapt the diversity of the resulting model. To find a good
tradeoff between diversity and accuracy, we select an ap-
propriate data representation according to

R?(·) = arg min
R(·)
|mms(X , C, R(·))− θmms|. (11)

Selection. We assume that the operator R(·) turns the
raw image data into a hierarchy of extracted feature values
(e.g., a tree). When going to the next level, the features there
convey more detailed information about the image, e.g., by
extracting information from image subparts, which can then
be subdivided further at the next level. Thus, the result-
ing representation can be refined step-wise to capture more
and more information from the underlying levels. Given
this kind of image representation, we optimize Eq. (11) to
let R(·) select the most relevant parts of that information.
In order to make this selection, we use a greedy, breadth-
first search, as follows. Having selected a set of subparts
at the level where the optimization process has arrived, we
then check for all their subparts at the next level. Those
parts for which subparts are selected, are from then on only
represented through these subparts, i.e., the original part is
deactivated and only the subparts at the next level are now
selected. This process continues until we have selected sub-
parts at the lowest (most refined) level or until adding a level
no longer decreases |mms(X , C, R(·))− θmms|.

Discussion. The number of cluster centers K is usually
fixed in practice (restricted by the memory, as each cen-
ter is a representative image). Therefore, our approach has
only one free parameter θmms, which specifies the trade-
off between generalization and discrimination of the model.
The optimal representation R(·), which projects the data to
the m-dimensional space, depends on the number of cluster
centers K and the threshold θmms:

m ∼ K, m ∼ 1
θmms

. (12)

Our method is related to subspace clustering [23]. How-
ever, it constrains the search space by making use of the
hierarchical structure of possible data representations.

3.1. Representative Concatenated Histograms
As our specific choice of feature hierarchy, we build

pyramids of feature histograms organized using a quad-tree
data structure (akin to [17]). Hence, a refinement step here
means splitting a part into its 4 quadrants and replacing
the part’s histogram by a selection of quadrant histograms.
Those quadrants that are not selected are said to be masked.
The histograms of all selected image parts (throughout the
hierarchy) are simply concatenated. We coin this represen-
tation representative concatenated histograms or RCH. The
procedure is visualized in Fig. 3.

Figure 3. Representative concatenated histogram selection: Based
on a generated pyramid of feature histograms, quadrants (red) are
selected by our algorithm, which are composed to the final feature
vector.

Applied to our task of unusual scene detection, the RCH
method has several advantages. An image region deviat-
ing strongly from the corresponding regions in other images
can be represented more closely by refining respective im-
age quadrants. Furthermore, the calculated image represen-
tation is still interpretable, which allows to localize image
regions that do not match well.

4. Implementation
In this Section, we describe how the approach in Sec. 2 is

implemented. Because not all data from a continuous data-
stream can be stored in practice, the memoryM is replaced
by the model from Sec. 3.

Features. We choose static, low level features because
of the properties of our data source (webcams with low,
varying framerate). Our algorithm computes Histogram of
Oriented Gradient features [7] by applying Sobel filters on
8× 8 image cells and equally dividing the orientation range
to 8 bins. In practice, only the histograms of the lowest level
are stored because higher-level histograms can be generated
based on sub-histograms. For simplicity and efficiency, the
features f1, f2 of two data points are compared using nor-
malized cross correlation.1

Clustering. We apply an online, agglomerative clus-
tering algorithm similar to [11]. As long as the maximum
number of clusters K is not reached, every observation is
saved. Afterwards, the most similar two cluster centers are
merged and the new observation is added. However, be-
cause a cluster center represents an image in our case, the
centers are not altered (i.e., merged), but the “weaker” cen-
ter is removed.

Our algorithm replaces a cluster center based on the fol-
lowing measure. We compute the number of times a cluster
center was a best match, limited to once per time window
∆t (e.g., a day), which is divided by its age (i.e., a multi-
ple of ∆t). Then, the cluster center with the lower value is
deleted. Hence, a cluster center is only removed (i) if an-
other nearby center exists and (ii) if it represents a scene

1We experienced that the performance did not improve by individually
normalizing sub-histograms instead of the complete, assembled feature.

that has not been observed for a long time. A cluster cen-
ters that is very distant to every other center remains in the
model, implementing our definition (see Sec. 2.1) that ev-
erything is usual that has been observed in the past. Alterna-
tively, those clusters could be removed instead which were
not best matches for a long time. In addition, similar cluster
center statistics could be used to also classify rare scenes,
according to Sec. 2.1.

4.1. System
The system consists of two parts. During an online de-

tection phase, the algorithm classifies outliers in real-time,
while the model is updated regularly (after ∆t, e.g., daily)
during a maintenance phase.

Maintenance Phase. First, the clustering algorithm in-
tegrates newly observed data as described before. Second,
the algorithm checks if a better data representation can be
achieved according to Eq. (11). Instead of only refining a
certain histogram by splitting parts (see Sec. 3.1), the al-
gorithm also checks if a representation is more suitable ac-
cording to Eq. (11) that is created by merging corresponding
quadrant histograms. Finally, S? and θalarm are computed
from the updated model. Note that θalarm can be calcu-
lated for the first time after 2∆t because it relies on S?. As
described in Sec. 2.2 and will be demonstrated in the exper-
iments, the system will get increasingly stable as more and
more scenes are observed.

Detection Phase. The first detection phase starts after
having processed data from 2∆t (see above). During the
online detection phase, an observation is classified based on
Eq. (7). This evaluation is very efficient, because θalarm is
computed in the maintenance phase. Second, the algorithm
can usually classify an observation as inlier without finding
its best match. According to our definition in Sec. 2.1, a
scene is usual if at least one similar data point has been ob-
served in the past. For this purpose, the cluster statistics de-
scribed above is used to first compare the input to the most
frequent cluster centers. Third, the search space can be re-
duced by only considering cluster centers with timestamps
that correspond to the observation (i.e., the same time mod-
ulo the pre-specified ∆t). This not only results in speed-up,
but also adds time-dependency to our approach. Thus, a
scene is usual only around a certain time of day (e.g., an
empty street is normal at night but not during the day).

5. Experiments
To demonstrate how the most important parts of the sys-

tem work, we perform two synthetic experiments using toy
examples. Such controlled experiments allow to better un-
derstand certain properties than using real data, where sev-
eral effects come together. Second, we evaluate the algo-
rithm on two interesting and challenging datasets captured
from public webcams.

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
2

1

Pusual

∆t

∆t

p1: (,)

p2: (,)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

p(t)

palarmP
us

ua
l

Figure 4. Samples are drawn time-dependently from two distribu-
tions p1, p2 (top). Based on Pusual and palarm, they are classified
(below). After 2∆t, samples from p2 are in the memory and thus
classified as inliers. In contrast, because p1 has not been observed
until 3∆t, they are classified as outliers. After 4∆t, samples from
p1 and p2 are in the memory and thus classified as inliers.

… …

0.999 0.998

0.922 0.687

0.514

0.981 0.789

Figure 5. For a dataset with a varying amount of noise in the differ-
ent image quarters, the generation of features from different res-
olution layers is illustrated. An image region deviating strongly
from the corresponding regions in other images can be represented
more closely by refining respective image quadrants. Our algo-
rithm selects a representation based on the shown mms-values.

5.1. Toy Examples
Outlier Detection (Sec. 2). We create two distributions

p1, p2 and randomly draw 20 samples during a time span
∆t from either p1, p2, or from both. Each distribution con-
sists of a pair of patterns (see images shown in Fig. 4), from
which one is drawn and altered by random noise. After
each time period ∆t, the memory (consisting of K = 10
samples) is updated, without adapting the feature resolution
(Sec. 3) for simplicity. After updating the memory after
2∆t, all samples from p2 are classified as inliers based on
Pususal (see Fig. 4, palarm is 10%). In contrast, after 3∆t,
samples from p1 are observed for the first time, which are
detected as outliers. After the following maintenance phase,
the memory contains samples from both distributions, such
that both are detected as inliers henceforth. For now on, al-
though only samples from one distribution would be drawn
for a long time, samples from the other distribution will re-
main in the memory (because of our clustering method, see
4) and will be classified as inlier.

Adaptive Data Representation (Sec. 3). We perform
an experiment using a data-stream that consists of 20 uni-
form images per time step. The images are altered by a

Figure 6. Typical scenes (cluster centers) for Loch Ness.

varying amount of random salt and pepper noise, depend-
ing on the different image quarters. While the left side of
the image remains empty, noise is added that affects in av-
erage 10% of the pixels in the top right quarter and about
50% of the pixels in the bottom right quarter. The generated
representations are illustrated in Fig. 5. The feature resolu-
tion is increased (from left to right) by replacing a single
histogram with four sub-histograms to represent a certain
image region more accurately, and vice versa. The mms-
values characterize the resulting models, based on which
our algorithm selects the data representation.

5.2. Real Data

Datasets. We recorded two datasets (resolution 640 ×
480 pixels, more than 0.5 TB of data) from public webcams
in New York (US) [4] and at lake Loch Ness (UK) [2]. The
dataset Time Square is captured around the clock during two
months with a framerate of 16 images per minute, and the
dataset Loch Ness during one month with a framerate of 3
images per minute. As can be seen from sample images
(Figs. 6, 7), the datasets cover scenes that capture a large
variety of potentially interesting events under a large range
of conditions (i.e., depending on the weather, illumination,
time of day, etc.). However, individual objects such as peo-
ple, cars or animals have a size of only a few pixels, such
that object detection and tracking is difficult. As mentioned
before, the framerate is very low.

Parameter Settings. We choose the parameters
θmms = 0.95 and palarm = 1%, which remain identical
for the sequences. The number of cluster centers is set to
K = 10, 000, limited by the physical memory. On a stan-
dard workstation (Intel P4 3.2 GHz, 2 GB), the runtime of
the algorithm during the test phase is about 200 ms and the
maintenance phase is in the order of minutes for our MAT-
LAB implementation. Because the framerate of many pub-
licly accessible webcams is below 5 fps, our algorithm is
able to process their data-streams in real-time. We disrupt
the online evaluation phase once a day for the maintenance
phase during a certain hour at night.

Evaluation. Dominant cluster centers for Loch Ness
are visualized in Fig. 6. For Time Square, Fig. 7(b) shows

(a) Input.

(b) Best match.
Figure 7. These input scenes (a) from the Time Square dataset are
classified as usual based on their best matches (b). However, the
right image should intuitively be classified as unusual.

typical matches found for the input in Fig. 7(a). The first
two scenes are correctly classified as usual. In the right im-
age, a low-loading truck has stopped at the roadside, which
intuitively should be an unusual scene. Because an excep-
tionally similar image is found (below), this scene is also
classified as usual. However, by simply looking at this im-
age, humans probably would not detect this event neither.

In Figs. 8 and 9, we plot Pusual on a logarithmic scale
for the whole time period, and the resulting unusual scenes
are shown. For Time Square, we select three representa-
tive hours of the day; Loch Ness is shown at once. In the
beginning of the timeline, some scenes are classified as un-
usual because nothing similar has been observed before, but
they appear normal to a human (see Fig. 8(a)). As soon as
enough data is observed, the system is stable.

Although it is hard to intuitively define when a
scene should be unusual, the classified outliers are
very plausible. Our algorithm detects unusual scenes
with (i) global incidents, covering a large image region
(8(f), 8(i), 8(j), 8(o)), or (ii) very atypical, local events
(8(b), 8(d), 8(k), 8(n), 8(q), 8(r)). Local events that are
too small to be detected directly as well as events related
to motion can also be detected, if they affect a larger area
of the scene. For example, our system can detect the ille-
gally parked car in Fig. 8(p), because other cars are forced
to cross the lane markings.

The unusual scenes in the first half of the Loch
Ness dataset are mainly caused by weather conditions
(Figs. 9(a)–9(e)). However, after the usual variety of con-
ditions appeared in the data, the system becomes robust
(see Pusual in Fig. 9). To demonstrate that our algorithm
would be able to detect the monster Nessie2, we manually
inserted an artificial image [1] (Fig. 8(f)). Details are shown
in Fig. 10. The algorithm finds the best matching cluster
center and current feature representation (Fig. 10(b)). Fur-
thermore, the monster is localized by computing the simi-
larities of the individual feature histograms (Fig. 10(c)).

2Nessie is a legendary monster living in a lake in the UK. [3]

3 am – 4 am

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

10−2

10−1
100

day

p
alarm

a b c d e
f

P
u

su
al

(a) Rain. (b) Smoke. (c) Parking trucks. (d) Antenna car. (e) Construction trucks. (f) Big tents.

8 am – 9 am

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

10−2
10−1
100

day

p
alarmg h

i j
k

l

P
u

su
al

(g) Tent. (h) Turning cars. (i) Big tents. (j) Shadow shape. (k) Parked car. (l) Roadwork.

12 pm – 1 pm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

10−2
10−1
100

day

p
alarmm n

o

p

q
r

P
u

su
al

(m) People on street. (n) Parking police cars. (o) Jam. (p) Stopping car. (q) Crane. (r) Roadwork.
Figure 8. Detected unusual scenes from the Time Square dataset (see text; best viewed magnified and in color). Videos are available on:
http://www.vision.ee.ethz.ch/∼bremicha.

6. Conclusion

We presented a novel approach for real-time abnormality
detection from continuous streams of webcam footage. The
main idea is that everything observed in the past is usual.
Therefore, our method classifies unusual scenes using the
concept of meaningful nearest neighbours, which has sev-
eral advantages. In order to focus on informative parts of
the scene, we automatically adapt the data representation.
To handle concept drift, the algorithm incrementally inte-
grates new observations. Our experiments demonstrate that
our method finds plausible unusual scenes in several months

of recorded webcam data. In the future, we will further ex-
ploit statistics of cluster centers. For example, typical time-
dependencies between scenes can be learned and specific
scenes can be recognized by incorporating additional infor-
mation e.g., from cross-media content or weak annotations.

Acknowledgments: We gratefully acknowledge support
by the EU project HERMES (IST-027110) and Google.

References
[1] Loch Ness Monster, c©Dan Blake. http://www.lochness.

co.uk/livecam/lochnessmonster.html, 2009/01/17.

7 am – 5 pm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

10−2

10−1

100

P
u

su
al

day

p
alarm

a b c d
e

f

(a) Snow. (b) Reflections in snow. (c) Shadow. (d) Clouds. (e) Reflections on water. (f) Nessie found!
Figure 9. Detected unusual scenes from the Loch Ness dataset. After having observed different weather and illumination conditions, the
system is stable and detects the Loch Ness monster!

(a) (b) (c)

Figure 10. The artificial input of Nessie (a) and the matching clus-
ter center (b), with automatically selected feature representation
(b). The monster is located by computing the similarities of the in-
dividual feature histograms (c) (higher intensity means lower sim-
ilarity score).

[2] Loch Ness Webcam. http://www.lochness.co.uk/
livecam/img/lochness.jpg, 2009/02/02 – 2009/03/02.

[3] Nessie, the Loch Ness Monster. http://en.wikipedia.org/
wiki/Loch_Ness_Monster.

[4] Time Square Webcam. http://images.earthcam.com/
ec_metros/ourcams/mpstudiosouth.jpg, 2008/04/01 –
2008/05/20.

[5] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust real-
time unusual event detection using multiple fixed-location monitors.
PAMI, 30(3):555–560, 2008.

[6] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is
”nearest neighbor” meaningful. In Conf. on Database Theory, 1999.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[8] H. Dee and S. Velastin. How close are we to solving the problem of
automated visual surveilla @nce? Machine Vision and Applications,
19(5-6):329–343, 2008.

[9] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-
consistent local distance functions for shape-based image retrieval
and classification. In ICCV, 2007.

[10] L. V. Gool, M. D. Breitenstein, S. Gammeter, H. Grabner, and
T. Quack. Mining from large image sets. In CIVR, 2009.

[11] I. D. Guedalia, M. London, and M. Werman. An on-line agglomera-
tive clustering method for nonstationary data. Neural Computation,
11(2):521–540, 1999.

[12] J. Hays and A. A. Efros. Scene completion using millions of pho-
tographs. SIGGRAPH, 2007.

[13] W. Hu, X. Xiao, Z. Fu, D. Xie, F.-T. Tan, and S. Maybank. A sys-
tem for learning statistical motion patterns. PAMI, 28(9):1450–1464,
2006.

[14] N. Jacobs, N. Roman, and R. Pless. Consistent temporal variations
in many outdoor scenes. In CVPR, 2007.

[15] N. Johnson and D. Hogg. Learning the distribution of object trajec-
tories for event recognition. In BMVC, 1996.

[16] J. Lalonde, S. Narasimhan, and A. Efros. What does the sky tell us
about the camera? In ECCV, 2008.

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In CVPR, 2006.

[18] J. Li, S. Gong, and T. Xiang. Scene segmentation for behaviour
correlation. In ECCV, 2008.

[19] D. Makris and T. Ellis. Learning semantic scene models from ob-
serving activity in visual surveillance. Trans. on Systems, Man, and
Cybernetics, 35(3):397–408, 2005.

[20] E. Nowak and F. Jurie. Learning visual similarity measures for com-
paring never seen objects. In CVPR, 2007.

[21] N. Oliver, B. Rosario, and A. Pentland. A bayesian computer vi-
sion system for modeling human interactions. PAMI, 22(8):831–843,
2000.

[22] D. Omercevic, O. Drbohlav, and A. Leonardis. High-dimensional
feature matching: Employing the concept of meaningful nearest
neighbors. In ICCV, 2007.

[23] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high di-
mensional data: A review. SIGKDD Explorations, 6(1):90, 2004.

[24] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost
in quantization: Improving particular object retrieval in large scale
image databases. In CVPR, 2008.

[25] Y. Pritch, A. Rav-acha, A. Gutman, and S. Peleg. Webcam synopsis:
Peeking around the world. In ICCV, 2007.

[26] S. Santini and R. Jain. Similarity measures. PAMI, 21(9):871–883,
1999.

[27] E. Spinosa, A. Carvalho, and J. Gama. An online learning technique
for coping with novelty detection and concept drift in data streams.
In Int. Workshop on Knowledge Discovery from Data Streams, 2006.

[28] C. Stauffer and W. E. L. Grimson. Learning patterns of activity using
real-time tracking. PAMI, 22(8):747–757, 2000.

[29] K. Sunkavalli, F. Romeiro, W. Matusik, T. Zickler, and H. Pfister.
What do color changes reveal about an outdoor scene? In CVPR,
2008.

[30] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:
a large database for non-parametric object and scene recognition.
PAMI, 30(11):1958–1970, 2008.

[31] X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory analysis and
semantic region modeling using a nonparametric bayesian model. In
CVPR, 2008.

[32] Y. Weiss. Deriving intrinsic images from image sequences. In ICCV,
2001.

[33] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in
video. In CVPR, 2004.

